Old Dominion University Rescarch foundation

o B

NASA-CR-193122

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING
COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

RESOURCE UTILIZATION MODEL FOR THE ALGORITHM TO
ARCHITECTURE MAPPING MODEL

‘/‘_ —
ey ey

By Mo = gl
John W, Stoughton, Principal Investigator S 7

and f/ 17 1

Rakesh R. Patel, Graduate Research Assistant

Progress Report
For the period ended June 30, 1993

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NCC1-136

Paul J. Hayes, Technical Monitor
ISD-Information Processing Technology Branch

(NMASA-CR-193122) RESDURCE N93-29171
UTILIZATION MODEL FOR THE ALGORITHM
TO AKCHITHECTURE MAPPING MODEL

Progr=ss 2-port, period 2nding 30 Unclas
Jun. 1993 (21d Dominion Univ.)
172 o

G3/61 0171504

June 1993

o -9

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING
COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

RESOURCE UTILIZATION MODEL FOR THE ALGORITHM TO
ARCHITECTURE MAPPING MODEL

By
John W. Stoughton, Principal Investigator

and

Rakesh R. Patel, Graduate Research Assistant

Progress Report
For the period ended June 30, 1993

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NCC1-136

Paul J. Hayes, Technical Monitor
ISD-Information Processing Technology Branch

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

June 1993

ABSTRACT

RESOURCE UTILIZATION MODEL FOR
THE ALGORITHM TO ARCHITECTURE MAPPING MODEL

Rakesh R. Patel
Old Dominion University
Director: Dr. John W. Stoughton

The analytical model for resource utilization, and the variable node time
and conditional node model for the enhanced ATAMM model for a real-time
data flow architecture, is presented in this research. The Algorithm To
Architecture Mapping Model, ATAMM, is a Petri net based graph theoretic
model developed at Old Dominion University, and is capable of modeling the
execution of large-grained algorithms on a real-time data flow architecture.
Using the resource utilization model, the resource envelope may be obtained
directly from a given graph and, consequently, the maximum number of
required resources may be evaluated. The node timing diagram for one
iteration period may be obtained using the analytical resource envelope. The
variable node time model, which describes the change in resource requirement
for the execution of an algorithm under node time variation, is useful to
expand the applicability of the ATAMM model to heterogeneous architectures.
The model also describes a method of detecting the presence of resource limited
mode and its subsequent prevention. Graphs with conditional nodes are shown
to be reduced to equivalent graphs with time varying nodes and, subsequently,
may be analyzed using the variable node time model to determine resource
requirements. Case studies are performed on three graphs for the illustration

of applicability of the analytical theories.

ACKNOWLEDGEMENTS
This is a thesis being submitted in lieu of a progress report for the research
project entitled "ATAMM Enhancement and Multiprocessing Performance Evaluation"
for the period ended June 30, 1993. This work was partially supported by the NASA
Langley Research Center through research grant NCC1-136 and monitored by Paul J.

Hayes, of the ISD, Information Processing Technology Branch, Mail Stop 473.

ii

TABLE OF CONTENTS

LIST OF FIGUREScococirtriiitirinreecvteevereeerctesesseesnesssessnestesnesnsensens

LIST OF TABLESooooiernenrenteteensentenes e sesnsesssssssesssesssesssesssennes

LIST OF SYMBOLS ...ttt sriesrtereessnsse s sesseassssssvassanans
Chapter

1. INtroductionccccceiinirree it

| 1.1 Problem Definitionccccoceevininniesiecrrceeecerceeeeenne

1.2 OVEIVIEWoociriiireeertceieniesetee e e e e e e sseeeaeeaneeneennes

1.3 Research Objectivecccccoevuerreeeiiiiiiieeriecieeieeeineeen,

1.4 Thesis Organizationccceceverveeerinerceseensereesseeenens

2. Overview of ATAMM Model and Basic Definitions

2.1 Introductionccccoceveninveeiienneriresie e eereenns

2.2 ATAMM Modelcoooviiriiiitirrecieeeie et eee et

2.3 Performance Measuresccccccceveeceereceeecnrecneerecneenne

2.4 Deposit Time and Fire Timeccccccoevvvevnivreeneeeennen.

2.5 Critical Path and TBIO for AMG with Forward
INitial TOKENS .oveeeeeeeeeeeeeeeeeeeeeeeeeereeeerevveeeeeseeeeseeaaeanes

2.6 Other Terminologyc.ccoocuveevirviiiiiiieeiieeieeeeeirnn e

iii

16

31

35

43

3. Development of Analytical Resource Utilization Model 50

3.1 INtroductionccccccceeerieciureniiniiniienieennreseneessssseens 50

3.2 Analytical Model for Resource Utilization 51

3.3 Development of TGP Diagramcccccoueriienrinnnnennnee. 69

3.4 Time Varying Nodes and Resource Limited Mode 76

3.5 Conditional Node Modelccccovmnmiiiiniiinnnnnieniiccnnnne. 86

4. Case Studies through Simulation/Experimentsc.....cc...... 103
4.1 Introductionccccceecemrereeenverininnniciniei e reee e 103

4.2 Case Study - I ... 103

4.3 Case Study - IT ... 118

4.4 Case Study - III ...t 124

5. CONCIUSIONooveiieriiiieererrinereesesseereeee e serarees e ssessssasesseneseerense 149
5.1 SUMIMATY ccoiviiiiriiiieceicrrrrrrrrererreeren e s e e s sessesseseesessessens 149

5.2 Evaluationcccccovoeeeienieiiiciiiniinc e, 150

5.3 Topics for Future Researchccccovveeveeevriciiininennnnnen. 153

LIST OF REFERENCESccooooiiitireenreenereeeesseeeeseenesessssnssnnseessseans 155

iv

FIGURE
2.1 Marked graphooveioeeiiienrrcen et s
2.2 Algorithm marked graph (AMG) for discrete system equation

x(k) = A x(k-1) + B u(k), and y(k) = C x(K) ccooeocevrrrnriinienininnns
2.3 ATAMM node marked graph (NMG) modelcccocvreerieirinnnnnn.
2.4 ATAMM computational marked graph (CMG) model for

discrete system eqUAationccccceeeeiiiiiirereeiinieneennennereensesseeersennes
2.5 ATAMM model componentscccceeeereenereercinnencnneeenmsnseneenineneens
2.6 Implementation of injection control strategycccecvmuereeeenee.
2.7 Example AMGoouiiiiiciiiieeieeseeeeeeerereerscnsrerrsssnesssesseesesssensensens
2.8 CMG for AMG of Figure 2.7eueeeieeeiieeeiiieieeceerveevee e s ccrnnnes
2.9 SGP diagram for the CMG of Figure 2.8ccccoeiviiivciiieiiieennn.
2.10 TGP diagram for the SGP diagram of Figure 2.9

With TBO =3 ..ottt
2.11 ATAMM performance plane diagramc.ccccecereererieiienneneenenns
2.12 TGP diagram for the SGP diagram of Figure 2.9

With TBO = 4 ..coiiiiiiicieteteerte et s
2.13 ATAMM performance plane diagram for the AMG of

LIST OF FIGURES

Figures 2.7 and 2.14 ... e

10

12

14

15

19

20

21

23

24

26

28

29

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Example AMG of Figure 2.7 with control arc added
TGP diagram for the AMG of Figure 2.14 with TBO =3
Block diagram of a digital PID controllercccovveervereeeeaicennnnes
Block diagram of a digital program implementation of the

PID controller ...ttt esse s ee e s e
The AMG implementation of the PID controller shown in
Figure 2.17 ...t ertee e ae e sses e s rnr s e e seersaesanaes
The TGP diagram for the AMG of Figure 2.18cccccvveeeenneeenn.
The AMG of Figure 2.18 with an extra node G added
The TGP diagram for the AMG of Figure 2.20cceceuuveenenee.
Example AMG to illustrate the concept of waiting tokens
The TGP diagram for the AMG of Figure 3.1 with TBO =3
An example AMG for illustrationcccooceevererireceiieeererecnnnen
Ordered array of boundaries and resources in different

regions for the AMG of Figure 3.3cccooovvvrevieceecciececevrenn
The TRE for the AMG of Figure 3.3 obtained using

the design too]oooieeeeiiiiiiceeeeceeeeeee et ee e eee e s e e naeraen e
The TGP diagram for the AMG of Figure 3.3 constructed

from the resource envelope tablec..ccccooeeiiiieiiicceeeceae.
The AMG of Figure 3.3 with a control edge inserted to

prevent resource limited modecooovvevrniiiiiiieiiiiireieeeirereeeeneens

An example of the conditional node AMGcccocvvvirevvrrirrcienneen.

30

32

39

40

41

44

45

47

55

56

65

68

70

77

87

92

3.9

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Reduced graph of the conditional node AMG shown

IN FiIgUre 3.8 oottt
The analytical view of the resource envelope for the AMG

Of FIigure 3.9 ...ttt e e se e e s s ene e
A conditional node AMG to illustrate the latest time to

o 1) o013 | AR URO
Reduced graph of the conditional node AMG shown

N FIgUre .11 ...ttt s sser e e s s s srsessseanne
Example AMG for case study I with three parallel paths
Ordered array of boundaries and resources in different

regions for the AMG of Figure 4.1c.ooovevreeeivveeeeiieeeeeeeeneen.

The TRE for the AMG of Figure 4.1 without any node time

The GDSC file for the AMG of Figure 4.1 with time

varying NOAe 1 ..c.cooioiiieiiiiee et ee e
The TRE for the AMG of Figure 4.1 under node time

VATIALION ...oiiiiiiiinicitcceteee et esre e eer e et e e nessneesesesesneesesnennes
The AMG of Figure 4.1 with control edges inserted to prevent
resource limited modecccoooireieeiiciii e,
The GDSC file for the AMG of Figure 4.6 to prevent

resource Hmited MOAeooovvvevviieieiieieeeeeeeeeieeeeeeeseeeeseeaesasesssreeenes

93

97

100

101

104

108

110

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

The TRE for the AMG of Figure 4.6 under node time

VAIAtION ..ooiviiiiiiiiiciieniier e e eab e s aae e
Example AMG for case study II with a circuitcccccereevreneneenn.
Ordered array of boundaries and resources in different

regions for the AMG of Figure 4.9 eererrerereereeereaarearaeataaaanernes
The TRE for the AMG of Figure 4.9 without any node time
VATIALION ..eiiiiirieieiiieerttenre st e st eeeerseressen et e s s eesenasssseeesansensanasnens
The GDSC file for the AMG of Figure 4.9 with time

Varying NOAE 1cccoeieeiiiereciiieeeee et e se e e s esanseesssasasseas
The TRE for the AMG of Figure 4.9 under node time

VATIALION L.eiiiiiiiiiiie ettt bae e sre e nn e eerneserreenne s
The AMG of Figure 4.9 with the control edge inserted from
node 5 to node 8 to prevent resource limited mode
The GDSC file for the AMG of Figure 4.14 of case study II

to prevent resource limited modecceeoevveeereeiieeeiiiieiieeee,
The TRE for the AMG of Figure 4.14 under node time
VATIALION ..ottt ee s eete s e e saeeereeebaeseneesne s e aesesneessnnens
A conditional node example AMG for case study III
Reduced graph for the conditional node AMG shown in

FIgure 4.17 ..ottt
The analytical view of the resource envelope for the

AMG of FIigure 4.18c..ovvieiiiieiiceeieeececeee et sas s

viii

4.20

4.21

4.22

4.23

424

4.25

The TRE for the AMG of Figure 4.18 without any node time

22V U 17 10) « QRSN O

The GDSC file for the AMG of Figure 4.18 with time

varying node 1, and combined nodes 2 and 3ccoccvereereerecnnnne

The TRE for the AMG of Figure 4.18 under node time

22 ¥ o T 10 10} o USSR

The AMG of Figure 4.18 with the control edge inserted from

node 4 to node 5 to prevent resource limited mode

The GDSC file for the AMG of Figure 4.23 to prevent

resource limited MOAe ...cooooveeeeeieeiiieieeeieeeeeeieeereveeenseeeersnsessesnnmnness

The TRE for the AMG of Figure 4.23 under node time

VATTATIOTL covuiiiiiiiiiieiineieiieeeeetaeeeeesnesesnnsesssnseressnnsnesennessennsssennsssennssans

ix

LIST OF TABLES

TABLE

2.1

2.2

3.1

3.2

3.3

3.4

3.5

4.1

4.2

Finding the critical path for the AMG of Figure 2.18 with
initial tokens on forward edgescccccoovuiriiiecicieiieninicceeenen
The critical path for the AMG of Figure 2.20 (with an extra
node added to the AMG of Figure 2.18)ccovemvieiiiiiciiieeiinnreenen.
The resource envelope table showing k-values and boundaries
for the AMG of Figure 3.3ccoovereiiiiiccirieeeceee e e e rneee s e
The modified resource envelope table for the construction of
the TGP diagram for the AMG of Figure 3.3ccccovevvrvecevnnennn.
Finding the possible range of variation of A, boundaries in one
TGP frame for the AMG of Figure 3.3cccooeevieiiiviirreeecirreeeenn.
The resource envelope table for the AMG of Figure 3.9
Finding the possible range of variation of A, boundaries in one
TGP frame for the AMG of Figure 3.9ccocooevveveviinvicecienceeneen,
The resource envelope table showing k-values and

boundaries for the AMG of Figure 4.1cccoocveveevecveeeeieeeereeees
Finding the possible range of variation of A, boundaries in

one TBO time frame for the AMG of Figure 4.1cc.ccecvvennneen.

PAGE

42

46

66

75

85

96

4.3

4.4

4.5

4.6

The resource envelope table showing k-values and

boundaries for the AMG of Figure 4.7cooovvieiieiiiiiiienerceenenn.
Finding the possible range of variation of A; boundaries in

one TBO time frame for the AMG of Figure 4.7cccccccveeuneeneen.
The resource envelope table showing k-values and

boundaries for the AMG of Figure 4.18ccevvieerriiveciereerenenen,
Finding the possible range of variation of A, boundaries in

one TBO time frame for the AMG of Figure 4.18ccccceeennn.e.

xi

SYMBOL

AMG
ATAMM
CE

CMG

DR
EF
ES
FDT
FU
GDSC
IE

IF

LF

LIST OF SYMBOLS

DESCRIPTION

Boundary across which resource requirement increases (k = 1)
Algorithm Marked Graph

Algorithm to Architecture Mapping Model
Number of Control Edges

Computational Marked Graph

Node Delay Time

Data Read

Earliest Finish

Earliest Start

Fire Data Time

Functional Unit

Graph Description and Simulation Control

Input buffer empty

Input buffer full

Change in the number of resources for each node
Number of initial tokens in i path

Latest Finish

xi1

LS Latest Start

m Number of outgoing edges for each node
N Number of nodes in the AMG
NMG Node Marked Graph

NODE,; Node corresponding to A, boundary

ODU Old Dominion University
OE Output buffer Empty
OF Output buffer Full
p Process Data
PC Process Complete
P, Earliest finish of i'* path, or time to deposit a token at the sink
PID Proportionate Integration and Derivative
PL Path Length
PR Process Ready
Queue size
R Resources
r Read Input Data
R, Increase in number of Resources
R, Maximum number of Resources
R, Minimum number of Resources
SGP Single Graph Play
S, Boundary across which resource requirement decreases (k = -1)

xiii

Sy
S_NODES,,

Source (Input) node in AMG

Successor Nodes of the node contributing A, boundary
Sink (Output) node in AMG

Number of Successor nodes of the Source (Input) Node S,
Number of outgoing edges with waiting tokens for each node
Time positions of resource boundaries in one TBO frame
Time Between Inputs

Time Between Input and Output

Lower bound limit of TBIO

Time Between Outputs

Lower bound limit of TBO

Total Computing Effort

Total Graph Play

Total Resource Envelope

Write Output Data

CHAPTER ONE
INTRODUCTION

1.1 Problem Definition

Research is focused on the development of an analytical model for the
resource utilization in the execution of large grain algorithms on
heterogeneous, multicomputer, data flow architectures. The algorithms which
may be implemented in an ATAMM defined data flow architecture are
considered. Algorithm To Architecture Mapping Model, ATAMM, is a Petri net
based theoretic model which describes data and control flow required for the
execution of large grain algorithms on multicomputer, data flow architectures

[1, 2].

1.2 Overview

The demand of high computing speeds is becoming predominant for any
computer system day by day. This is especially true in applications such as
real-time signal processing and complex control algorithms, which often require
a timing deadline for the completion of a job. In many cases, it is desirable to
increase performance of a computer system using multiple processors running
the same algorithm concurrently. The ATAMM model describes the system

behavior and predicts its performance for real-time algorithms, and facilitates

2

the mapping of these algorithms onto multicomputer, data flow architectures.
In a data flow architecture [4], the execution of an instruction is controlled by
the availability of data needed for its execution. In other words, flow of data
causes the execution of instruction as opposed to the flow of control in
conventional machines.

The ATAMM model consists of a set of Petri net marked graphs which
incorporates the control and data flow definitions associated with each
computational event to specify the criteria for the predictable execution of an
algorithm with highly reliable performance [2]. It also provides the means for
investigating different algorithm decompositions in an architecture
independent way. Once the intended hardware is chosen, the model can be
used to match the algorithm requirements with the hardware capability in
order to achieve optimum performance. With availability of sufficient
resources, the system executes algorithm with maximum throughput and
minimum computing time.

The determination of resource requirements for achieving optimum time
performance under worst case condition is of interest. The resource envelope
is a time history of resource requirements over the interval between successive
inputs. A model for analytical evaluation of the resource envelope, and
consequently, the maximum resources required (R_,) is developed. For a
system with non-homogeneous processors, node times of an algorithm graph

vary as a node may be executed by a different processor in each repetitive

3

execution of an algorithm. Conversely, if node times vary, it may cause a
change in resource requirement and may also cause resource limited mode.
The conditions for the presence of resource limited mode under node time
variation and its subsequent prevention are investigated. Also, many
algorithms, such as control system algorithms, require conditional branching
of nodes so that only one of the several successive paths is to be executed.
Each node must be able to enable selectively one of the several outgoing paths.
A conditional node algorithm graph may be reduced to a variable node time

graph and, consequently, its resource requirement may be evaluated.

1.3 Research Objective

The objective of this research is to develop the analytical resource
utilization model to evaluate the resource envelope and maximum resource
requirement, R, directly from a given graph, and to investigate resource
requirements for time varying node graphs and conditional node graphs. The
model also provides an analytical means of determining the presence of
resource limited mode with time varying nodes and, subsequently, its
elimination without degrading system performance and predictability. The
approach taken to evaluate the analytical resource envelope is straightforward,
and is based upon calculating the path length from the source input to each
deposited output token. The execution of a graph with initial tokens on

forward edges is also investigated to evaluate the critical path and the critical

4

path length, since this type of graph structure is obtained in some control
applications. In addition, this class of graphs had not been treated previously
in the ATAMM model development. Research is aimed as an enhancement to
the ATAMM model with respect tq incorporation of graphs with time varying
and conditional nodes, and also with initial token markings on the forward

edges.

1.4 Thesis Organization

Basics of the ATAMM model is presented in Chapter Two and the
performance measures are defined in the ATAMM context. The deposit time
of a token is defined along with the fire time of any node in the AMG. The
execution of graphs with initial tokens on the forward edges in the systems
based on the ATAMM model is investigated, and the critical path and the
critical path length are defined for these graphs. Such graphs distinptly
represent control system algorithms with initial conditions embedded in them.
Path length, modulo-TBO operation and other terminology relevant to this
thesis research are defined.

The development of the analytical resource utilization model to evaluate
the resource envelope and the Total Graph Play (TGP) diagram is presented
in Chapter Three. Consequently, a method for determining the value of R__,
is described, assuming a worst case analysis. In addition, the analysis of

algorithm graphs with time varying nodes is discussed in consideration of

5

instantaneous increases in resource requirements. A method for analyzing and
eliminating the potential for this increase beyond R, or resource limited
mode, with graphs having time varying nodes is presented. An overview of a
conditional node graph is presented, and its mapping on the ATAMM based
systems is discussed by obtaining an equivalent reduced graph which contains
time varying nodes. Consequently, a method for determining the resource
requirement for conditional node graphs is outlined.

The analytical model developed in Chapter Three is illustrated by
performing case studies on example algorithm graphs in Chapter Four. The
analytical results obtained using theoretical model are compared with the
experimental results. The experimental results are qbtained using ATAMM
software support tools such as Simulator (Version 2.3) and Analyzer. The case
studies are performed on three algorithm graphs, the first is a graph with
three parallel paths, the second is a graph with a closed circuit in it, and the
third is a conditional node graph.

The summary of research with appropriate conclusions and evaluations

is given in Chapter Five, and topics for future research are outlined.

CHAPTER TWO

OVERVIEW OF ATAMM MODEL AND BASIC DEFINITIONS

2.1 Introduction

In this chapter, an overview of the ATAMM data flow architecture model
is presented. Background for the ATAMM model is presented in Section 2.2.
The performance measures of the model are described in Section 2.3. The
material presented in Sections 2.2 and 2.3 extensively uses information
previously reported by Stoughton and Mielke [6], Jones [7], and Mandala [12].
The concept of deposit time, fire time, and related issues are discussed in
Section 2.4. These issues are an important factor in the development of the
analytical model for resource utilization, and consequently investigating the
behavior of graphs with time varying and conditional nodes as described in
Chapter 3. The notion of deposit time and fire time is also useful in the
evaluation of the critical path and the critical path length for a graph with
initial tokens on forward edges, as described in Section 2.5. In Section 2.6,

other terminology relevant to the research is described.

2.2 ATAMM Model
Since the last decade, because of continuous increase in dependency on

high speed computing environment, multiprocessor and parallel processing

7

systems have become an area of intensive research. The development of
parallel architectures composed of a number of identical, special purpose
computing elements is of particular interest [6]). The computing elements of
a distributed system must share distributed resources and information for
better utilization. Therefore, there is a need to synchronize and control this
sharing in order to obtain accurate overall system operation [7].

The ATAMM model is an outcome of research at Old Dominion
University, in conjunction with NASA-Langley Research Center, to develop a
multicomputer operating strategy for an implementation of large-gained,
decomposed algorithms on data flow architectures. This model is of particular
importance because it provides a context in which algorithm decomposition
strategies can be investigated without the need to specify a specific computer
architecture. The model also identifies the data flow and control dialogue
required of any data flow architecture which implements the algorithm. In
addition, the model provides a basis for analytically calculating the
performance bounds for computing speed and throughput capacity [5].

The ATAMM model consists of three Petri net marked graphs called the
algorithm marked graph (AMG), the node marked graph (NMG), and the
computational marked graph (CMG). A Petri net is a special kind of directed
graph which is capable of describing data and control flow of a system [7].
Petri nets serve as both a graphical and mathematical tool. An example of a

marked graph is shown in Figure 2.1. In a marked graph, circles represent

ydead poyaeyy °1°z aandig

aoe]g) 93
(90%]q) vm/

(uonIsuel],)
9poN pa[qeuy

e

(uonIsue1]) SPON

9

nodes (transitions or actual computations) and line segments represent edges
(places or flow of data). The black dots on the edges represent tokens which
indicate availability of data. A node is enabled or fired by the presence of
tokens on all incoming edges.

The AMG is a representation of a specific algorithm decomposition.
Operations are represented by nodes and operands are represented by directed
edges. Availability of data is represented by the presence of tokens on
incoming edges. Source and sink transitions for input and output signals (data
packets) are represented as squares. An example illustration of an AMG for
a discrete system equation is shown in Figure 2.2. The AMG does not display
procedures that a computing structure must manifest in order to perform the
computing task. Also, the issues of control flow, time performance, and
resource management are not apparent from this graph.

The NMG is a Petri net graph that represents the performance of an
algorithm operation by a functional unit. Three basic activities, reading of an
input data from global memory, processing an input data to compute an output
data, and writing of output data to global memory, are represented as
transitions (nodes) in the NMG. Data and control flow paths are represented
as places (edges), and the presence of data is shown by tokens marking
appropriate edges. A read transition can be fired only if a functional unit is
available in a queue of available functional units and a token is present on

each incoming edge. Once assigned, the functional unit is used to implement

10

‘(DX D = (DA pue (Pn g + (I-PX VY = (PX
uonenbs wajsAs 9)a10sIp a0y (HWV) ydead poyaem wPLIOFIY °g'g andig

(Vv

(Dx (T-34)xy

oS

IS

O

4
wx __/J cng

(DL

(Do

©

ore ()+() ()«d

11

the read, process, and write operations before being returned to a queue of
available functional units. An NMG describing these basic activities, along
with the meaning of edge labels, is shown in Figure 2.3.

The CMG is constructed from the AMG and the NMG using the

following rules:

1. Source and sink nodes in the algorithm marked graph are
represented by the source and sink nodes respectively in the CMG.

2. Nodes corresponding to algorithm operations in the algorithm marked
graph are represented by NMGs in the CMG.

3. Edges in the algorithm marked graph are represented by the edge
pairs, one forward directed edge for data ﬂow and one backward
directed edge for control flow, in the CMG.

The play of the CMG proceeds according to the following graph rules:

1. A node is enabled when all incoming edges are marked with a token.
An enabled node fires by absorbing one token from each incoming
edge, delaying for some specified transition time (equal to time
required for node computation), and then depositing one token on
each outgoing edge.

2. A source node and a sink node fire when enabled, independent of the
availability of a functional unit.

3. A node precess in initiated when the read node of an NMG is enabled

and a functional unit is available for assignment to the NMG. A FU

n Tokens OE
@

DR PC
OF

m=1 Tokens

NMG Arc Labels NMG Node Labels

IF

IE

DR
PC
PR
OE
OF

Input Buffer Full

Input Buffer Empty r Read Input Data
Data read

Process Complete p Process Data
Process Ready

Output Buffer Empty w Write Output data
Output Buffer Full

Figure 2.3. ATAMM node marked graph (NMG) model.

12

13
(functional unit) remains assigned to an NMG until completion of the

firing of the write node of the NMG.

A CMG representation of the AMG of Figure 2.2 is shown in Figure 2.4.
The complete ATAMM model consists of the AMG, the NMG, and the CMG.
A pictorial view of the ATAMM model with its components is shown in Figure
2.5.

The CMG of Figure 2.4 has some important characteristics. Execution
of the CMG results in live, reachable, safe, deadlock free, and consistent
behavior. Liveness indicates that every transition of the graph can be fired
from the initial marking [5]. Reachability implies that an output will be
produced for every input. The CMG is safe because the backward control
edges prevent data from being overwritten, or they prevent a graph from being
over-crowded with excessive data packets. The backward control edges prevent
enablement of a transition until previous output data are being picked up. The
CMG is also deadlock free, because once assigned to a node, a functional unit
is always able to complete node execution. Consistency implies that the CMG
periodically produces output when inputs are applied periodically [5].

There are two types of concurrency possible during the execution of an
algorithm as specified by the CMG. Nodes belonging to the same data set and
which are independent of each other may be executed simultaneously. This
type of concurrency is referred to as parallel concurrency and has a direct

effect on computing speed. It is limited by the number of nodes that can be

14

‘uoyyenba wNsAs 33aI081p 10§ [opowr (YD) ydead poyaew [euoneIndwiod WNVLY ‘$°Z oandij

Computing
environment

Algorithm
directed graph

Node marked
graph

Algorithm
marked graph

Computational
marked graph

Figure 2.5. ATAMM model components.

15

16

performed simultaneously for a given algorithm graph and by the number of
functional units available. Also, nodes belonging to different data sets can be
performed simultaneously in the computing system. This type of concurrency
is referred to as pipeline concurrency [4]. It is limited by the capacity of the
graph to accommodate additional data sets and by the number of functional

units available to implement the algorithm periodically.

2.3 Performance Measures

In this section, basic measures of time performance in the ATAMM
model are described. The determination of resource requirements for the
execution of a given graph on a data flow architecture is presented. Also, the
ATAMM performance plane is described.

In Section 2.3.1, two time performance measures, TBIO and TBO, are
defined. A brief overview of a graph play and corresponding resource
requirements is presented in Section 2.3.2. In Section 2.3.3, the ATAMM

performance plane is defined, and an example for illustration is presented.

2.3.1 Performance Measures

The performance measure TBIO (Time Between Input and Output) is
the elapsed time between an algorithm input and the corresponding output.
TBIO is an indicator of the computing speed. The lower bound for TBIO,

denoted as TBIO,4, is given by the sum of node (transition) times for nodes

17

contained in the longest directed path from input source to the output sink in
the AMG. This is shown in [4]. The performance measure TBO, for the time
between outputs, is the elapsed time between successive algorithm outputs
when the AMG is operating periodically at steady state. The inverse of TBO
is an indicator of output per unit time or throughput. The lower bound for
TBO, imposed by the algorithm, is given by the largest time per token of all
directed circuits in the CMG [4]. The lower bound for TBO, imposed by
available resources, is given by TCE/R where TCE (Total Computing Effort) is
the sum of node times for all nodes in the AMG and R is the number of
available functional units (resources). The lower bound for TBO, denoted as

TBO,s, is the greater of the algorithm bound and the resource bound.

2.3.2 Injection Control and Resource Requirements

In this section, a brief description of injection control is presented.
Then, two diagrams which display graph play and are useful for determining
the number of resources required to achieve specified performance measures
are defined.

Injection control is a control procedure which limits the maximum rate
at which new input data packets can be injected. A data packet is an input
data set. For real-time control and signal processing applications, the
algorithm is repeated periodically with new input data sets [4]. When

presented with continuously available input data packets, the natural behavior

18

of a data flow architecture results in an operation where data packets are
accepted as rapidly as available resources and the input node transition
permit. This leads to a steady state operating point where TBO = TBO,, but
TBIO > TBIO,;. This occurs because the pipeline from input to output
becomes congested with extra data packets which must wait for free resources
to be processed. Injection control eliminates data packet congestion and thus
preserves operation at TBIO, ;. An example implementation of injection control
strategy is shown in Figure 2.6.

In the AMG, the longest path from the input source to the output sink,
measured in terms of time, is defined as the critical path. There can be more
than one critical path for a given AMG. In the example AMG of Figure 2.7,
nodes 1, 2, and 5 form a critical path. In this graph, there is only one critical
path. The critical path length (TBIO) is 5. The CMG for AMG shown in
Figure 2.7 is given in Figure 2.8.

The single graph play (SGP) diagram is a diagram which displays the
execution of each node of the AMG as a function of time. The diagram is
constructed for a single input data packet under the assumption that unlimited
resources are available to play the graph. Node activity is denoted by a solid
line and the symbols (<,>) are used to indicate the beginning and end of node
execution. When several nodes are active at the same time, lines indicating

node activity are stacked vertically so that computing concurrency is apparent.

Algorithm
S CMG
! Graph

Controller

D = node delay time

Figure 2.6. Implementation of injection control strategy.

19

20

0§

w0

d
ngy
o

‘g
X ‘L

aydure

DNV

IS

21

"L°g 8INIL] JO HUY 10] HND '8°Z danBig

22
The SGP diagram for the CMG shown in Figure 2.8 is given in Figure 2.9. The

data packets are numbered in the same sequence in which they are injected.

The number of resources required to execute a single data packet is
obtained by counting the number of active nodes during each time interval in
the SGP diagram. The peak resource requirement is denoted by R, and it
represents the minimum number of resources necessary to achieve operation
at TBIO = TBIO,;.

The total graph play (TGP) diagram displays the execution of each graph
node when the graph is operating periodically in steady state with a period of
TBO. The TGP diagram is constructed using information from the SGP
diagram. (However, in Chapter 3, we will see that the TGP diagram may be
constructed using information from the Total Resource Envelope determined
analytically from a given AMG). The SGP diagram is divided into segments
of width TBO, and these segments are overlaid to form the TGP diag;am.
Each segment from the SGP diagram represents a new input data packet.
Data packets are numbered sequentially so that the packet numbered i+1 is
the data packet which is input to the graph TBO time units after the packet
numbered i. The TGP diagram for the SGP diagram of Figure 2.9 is shown in
Figure 2.10.

The resource requirements to execute multiple data packets injected
with a period equal to TBO are obtained by counting the number of active

nodes during each time interval in the TGP diagram. The peak resource

23

A

l\jl 2 us;;
S R
VR

> Time

Figure 2.9. SGP diagram for the CMG of Figure 2.8.

A . .
2)
@ g ;@
E @)
: 2
L 4(:) R
1 1)
NGV REEGY |
: > Time
0 1 2 3 4

Figure 2.10. TGP diagram for the SGP diagram of Figure 2.9
with TBO = 3.

24

25

requirement R, is determined by finding the largest resource requirement in
all TGP diagrams drawn for injection intervals greater than or equal to TBO.
From Figure 2.10, it is evident that a minimum of four resources are required
for TBO, equal to 3. It can be easily shown that if the TGP diagram is drawn
for values of TBO > 3, the resource requirement does not exceed 4. Therefore,

the peak resource requirement R___ is 4.

2.3.3 ATAMM Performance Plane

The display of all the operating points on a graph of TBO versus TBIO
with R as a parameter is called the ATAMM performance plane diagram. An
example performance plane diagram is shown in Figure 2.11.

The system exhibits the best time performance when operated at the
lower bounds of TBO and TBIO. Operation of the algorithm graph at these
lower bounds is achieved using input injection control. The resource
requirement at this point is the value R, obtained in the TGP diagram drawn
for TBIO,; and TBO.z. Under conditions of nonavailability of sufficient
resources, the operating point must be shifted to a place so that fewer
resources are required. By using injection control, the operating point can be
moved along the vertical line A-V. This operating strategy preserves TBIO but
degrades throughput performance [8]. The operating points on the vertical line
A-V are calculated from the TGP diagram by increasing TBO until the number

of active nodes in any time interval decreases by one from the previous

26

"wexdeIp sueld souBwLIoyIad WIAVLVY °‘11°2 @angdig

OolId., owry, 0 0IdL IO 014.L
uonnoaxy € ” .
H AIIOQ’ LA a1 Og.L
nnnnnnnnnnnnn q
=] -

sjuro g

3unesed) WINVILV A \/

04 pouaq

uotyeIN|

27

operating point. As an example, consider the AMG of Figure 2.7. By
increasing TBO from 3 to 4, as shown in the TGP diagram of Figure 2.12, the
number of required resources decreases to 3. Increasing TBO to 5 would not
reduce the resource requirement. These points are shown in Figure 2.13 along
the vertical line at TBIO = 5.

To reduce resource requirements, the operating point also can be moved
along the horizontal line A-H. This operating strategy degrades computing
speed but preserves TBO [9]). This strategy is implemented by adding control
edges to the original AMG. A control edge is an AMG place which imposes a
precedence relationship among two transitions, but does not imply data
dependency [9]. When such an edge is added to an AMG, the longest path
from input to output increases, thus increasing TBIO. The addition of control
edges can crate new directed circuits having increased time per token values
so that TBO is also increased. This can be avoided by increasing the number
of buffers (queue size) on an edge in the AMG. Every edge has an initial
buffer size of one which serves as a storage for the output of a node. By
increasing the number of buffers on an edge, the token count on circuits
formed by adding control edges can be increased so that the value of TBO is
preserved. Operating point design using control edges and buffer spaces is
explained in more detail in [4].

As an illustrative example, consider an AMG of Figure 2.7. Adding a

control edge from node 3 to node 4, as shown in Figure 2.14, requires that

28

A . . .
1(2) . . 9(2) :
3@ :
4@ f
(D f
<——>
: > Time
0 1 2 3 4 5

Figure 2.12. TGP diagram for the SGP diagram of
Figure 2.9 with TBO = 4.

29

TBO
A
---------------------------- .R:Z
R=3
. .. ,
....................... ® -®R=3
R=4 -
| ; s z 1 | | >
0 1 2 3 4 5 6 7 TBIO

Figure 2.13. ATAMM performance plane diagram for
the AMG of Figures 2.7 and 2.14.

30

"POPPE OIE8 [01)U0D Y14 £°g anJ1] Jo HV o[dwexy “p-g oanSig

z="
oIy [01jU0)) %/

F e

31
buffer size be increased between nodes 1 and 4. The TGP diagram for the

AMG of Figure 2.14 is shown in Figure 2.15. Here TBO = 3, TBIO = 6, and
R, = 3. The new operating point at TBO = 3 and TBIO = 6 for R = 3 is
shown in Figure 2.13. Additional operating point at TBO = 5 and TBIO = 6 for
R = 2 is obtained by using injection control.

The performance plane diagram provides information essential for the
selection and control of the time performance of algorithms executing under
ATAMM rules. Operating points are selected by identifying R points in the
performance plane, one point corresponding to each resource number. The
point associated with a specific value of R identifies the value of TBIO and
TBO when the system is operating with R resources. If the number of
resources changes, then a new operating point is identified. Operation at the
new point is realized by modifying the graph with control edges and buffers,

and adjusting the input injection interval.

2.4 Deposit Time and Fire Time

In this section, description of deposit time of an enabling token for the
firing of a node is presented. This will be taken as a basis for the development
of an analytical model for resource utilization in Chapter 3. The latest time
at which a node may fire, or is ready to fire is called fire time. The necessary
condition for firing is outlined and, consequently, the fire time of a node is

defined in terms of the deposit time of enabling tokens. This is useful in

A . .
1(2)\:1 o @
3 2
S AR
o SO
> <>
1 :
4(:) R
: > Time
0 1 2 3 4

Figure 2.15. TGP diagram for the AMG of Figure 2.14
with TBO = 3.

32

33
finding the critical path and TBIO for a graph with forward initial tokens, as

will be seen in Section 2.5.

2.4.1 Waiting Token and Deposit Time

An enabling token which waits (on an incoming edge of a node) for
tokens from other nodes to become available is called a waiting token. The
positions of waiting tokens in the graph, and deposit times of waiting tokens
in one TGP (steady state) time interval are important in the construction of the
resource envelope. The resource envelope gives the information regarding
number of resources utilized at each time instant over one TBO time frame.
Therefore, finding the net change in number of resources required at the
completion of each node in the AMG along with their time positions over one
TBO time interval are sufficient for the development of the resource envelope.
The concept of a waiting token and its deposit time directly leads us to obtain
basic requirements for analytically developing the resource envelope.

In an abstract sense, a waiting token is present on an edge if the token
1s waiting for other token(s) from other node(s) to become available. As for
example, a node may have several edges directed to it from other nodes. Each
of these predecessor nodes must finish execution and deposit an enabling token
on all incoming edges of the successor node in order to fire the successor node.
Of interest is determining the predecessor node which deposits the last

enabling token. An edge directed from this predecessor node to the successor

34

node of interest constitutes an edge with no waiting token, and all other edges
directed to its successor are assumed to have waiting tokens on them, even if
there may be more than one paths present with equal lengths. This
assumption is relevant because in physical reality, token must be present for
an infinitesimally small amount of time.

The physical interpretation of a waiting token on an outgoing edge from
any node is that the resource assigned to this node is freed and is entered in
a queue of available resources, thus reducing the resource requirement by one.
An absence of a waiting token means that the release of a resource occupied
by a node is now replaced by a resource assigned to its successor, thus causing
no net change in number of resources. For example, if node A has three
outgoing edges on two of which waiting tokens are present, one of the three
successors fires immediately after A is finished, and there is no net change in
the number of resources utilized. If a waiting token is present only on one
edge, two resources are required immediately after one is released, which gives
a net increase of one resource. If none of the edges has a waiting token, the
net increase is two.

In summary, for any node in the AMG, N-1 incoming edges to a node out
of a total N would have waiting tokens present on them. For each edge with
a waiting token, time to deposit the token is equal to the path length of a
waiting token, and this may be calculated by finding the longest path from the

source to a particular edge, and summing all the node times in this path.

35
2.4.2 Fire Time of a Node

A node may be fired when each of the incoming edges to the node has
an enabling token present on it. An enabling token may correspond to either
a current data packet or any of the previous data packets. If the path contains
an initial token on any edge, the data dependency is reduced by one packet
number at that point, and an enabling token is obtained from any of the
previous data packets depending on the number of initial tokens in the path.
Data packet index is reduced by one for each initial token present in the path.

Fire time of a node is the time at which all the enabling tokens for the
node are available. Fire time is the maximum of deposit times of all the
enabling tokens (either from a present or any previous data packets) for a
node. The notion of fire time of a node is used in the following section in
determining the critical path and TBIO for a graph with initial markings on

forward edges.

2.5 Critical Path for AMG with Forward Initial Tokens

In this section, an algorithm for finding the critical path and,
consequently, calculating TBIO for an AMG with initial tokens on the forward
edges is presented. Consider an algorithm implementation of a control system
which has a unit delay operator Z' in it. This constitutes operation on
previous data values. This kind of situation may be handled in the directed

graph by inserting an initial token on the appropriate edge. The calculation

36
of the steady state critical path is not straightforward for this type of graph

due to the presence of initial token(s) on forward edge(s). The modified AMG
method, to find the critical path, does not address the case when AMG contains
forward initial tokens. The algorithm presented here is used to identify the

critical path without any misinterpretation.

2.5.1 Identification of the Critical Path

A node requires that data be available on all the incoming edges for its
enablement, either in the form of the present or previous data packet(s).
Availability of data on edges is represented by the presence of a token on each
edge. A node is not fired until the longest directed path from source leading
to the node has data available as an input to the node. In other words, the
node fires when a token is available on an input edge which corresponds to
longest path to the node. This means that enablement of any node is
determined by the longest time to deposit of token on each incoming edge.

An initial token on any edge represents data dependency on the previous
data packet in firing of a node on which edge directs. Absence of an initial
token represents dependency on data corresponding to the present data packet.
If the number of initial tokens in one of the several paths from the source
leading to any node is n, then the enablement of this node is partially
dependent on the availability of the (i-n)* data packet where i is current data

packet.

37

In summary, the maximum of the times to deposit each of the enabling
tokens (whether from present or previous data packet) to a particular node
decides the longest path from source to this node. The critical path of a given
AMG is, by definition, a longest path from input to output of a graph.
Therefore, if we find times to deposit a token (P,) at the input of the sink for
all possible paths starting from the source, then the maximum value of P, gives
the critical path length and determines the critical path. To find time to
deposit a token for a path having initial token(s) on it, we subtract one TBO
interval from the path length for each initial token present on the path, since
the token corresponding to previous data packet is available prior to TBO time
period.

A method for the determination of the critical path is outlined as follows:

1. Find all possible paths from source to sink and compute
corresponding path lengths.

2. Find the number of initial tokens present in each of the paths found
above.

3. Find time to deposit a token (P,) for each path by subtracting number
of TBO time units equal to the number of initial tokens in the
corresponding path.

4. The maximum value of P; gives TBIO and the corresponding path is

the critical path.

38

This method may be considered as an extension of the original approach

(modified AMG method) to account for initial tokens in the forward path [2].

2.5.2 Critical Path Evaluation (Example)

As an illustration of this method, consider a digital PID controller [11]
shown in Figure 2.16. If we determine the transfer function of a digital
controller, it can be implemented by a computer. The operator z! is
interpreted as a time delay of T seconds, where T is the sampling period. This
time delay is implemented by storing a variable at some storage location and
then taking it out after T seconds have elapsed. Once this relation is
established, we can easily identify the program of any physically realizable
transfer function. The transfer function for the digital differentiator and the
digital integrator is given by G, (z) and G, (z) respectively, as shown in Figure
2.16. Figure 2.17 shows a block diagram representation of the digital program
of the PID controller in Figure 2.16.

The algorithm implementation of the PID controller in Figure 2.17 is
given in Figure 2.18. One node has a self loop, and a total of three initial
tokens are present in the AMG. Firing node F requires the current data
packet from node A and node C, and the previous data packet from node E.
The results of applying the critical path evaluation method to the AMG of

Figure 2.18 are tabulated in Table 2.1, which is self-explanatory. The critical

39

“I9[[0X3U0d (Id [BNBIP © Jo ureaderp Yooig °'9r'g oandiyg

-2-1

= (@D
- 2L

£L
G-2%2-1) o (2)a)

2L

I1-2

(1) 3

*II[[OXIUO0D
daid 2Yy3 jo uonsjuswadur wreadoad ejdip 8 jo weaderp yoorg °L1'g oandig

- Z9deimg €L

o (LN J

- Z 98eamg

41

"L1'g 9IN31 Ul UMOYS JB[[OIJU0D (I Y} JO uoneyuswaidw HY oY], ‘g1 danS1g

2=0

J0d 'yred [eonu)
9= 0I4L
¥ =04l

oS

ueYoL ey

IS

Path Path Length | # of Initial | P, = PL - k, TBO
Tokens, k,
AF 0 5
BCF, 1 2
BCF, 0 6
DEF 10 1 6

Table 2.1. Finding the critical path for the AMG of Figure 2.18

with initial tokens on forward edges.

TBO =4

Mazx (P)) = 6 for BCF,
Critical Path = BCF,

TBIO =6

42

43
path is B-C-F, and TBIO is equal to 6. The TGP diagram for the AMG in

Figure 2.18 is shown in Figure 2.19.

Assume that the AMG in Figure 2.18 is changed by inserting node G
between node E and node F as shown in Figure 2.20. Now, node F requires for
firing the current data packet from node A and node C, and the previous data
packet from node G. The results for the AMG of Figure 2.20 are outlined in
Table 2.2. The critical path for the new graph is found to be D-E-G-F, and
TBIO is equal to 9.5. Also, the TGP diagram for the AMG in Figure 2.20 is

shown in Figure 2.21.

2.6 Other Terminology

The purpose of this section is to define new terminology relevant to the
thesis research. This includes mod TBO operation, integer(path length/TBO)
operation, relative data packet number, and k-boundary.

Mod TBO operation for a given path length and a given TBO is defined

as

Path Length) (2.1)
TBO

Mod TBO (Path Length) = Remainder (

In the mod TBO operation, a given path is wrapped around over one

TBO time interval (in the TGP diagram), and the remainder time period (left
over portion of the path after wrapping, which incorporates the end of the path

under consideration) is found. The value of mod TBO(path length) varies from

A : ,
lAz ' :
: . 9 I
B2 . C F?
F1 f 5
:D2)
gl
: > Time
0 1 2 3 4

Figure 2.19. The TGP diagram for the AMG of Figure 2.18.

45

"POppE) SPOU BIIXI UB (1M 81° 2INBL] JO DIV dYL, '03'3 dInBig

rmUMQ“ﬁmm_doﬁto m.m
g6 =0I4dL
¥ =041

wONOT, [EBIU] O

Path Path Length | # of Initial | P, = PL - k; TBO
Tokens, k,
AF 5 0 5
BCF, 1 2
BCF, 6 0 6
DEGF 13.5 1 9.5

extra node added to the AMG of Figure 2.18).

TBO =4

Max (P,) = 9.5 for DEGF
Critical Path = DEGF

TBIO =9.5

46

Table 2.2. The critical path for the AMG of Figure 2.20 (with an

E2 - g?
cl 2
Fl - :
FSIN
3 Z
. B c? R
> Time
0 1 2 3 4

Figure 2.21. The TGP diagram for the AMG of Figure 2.20.

47

48
0 to (but not including) TBO. In other words, outcome of the mod TBO

operation on a given path length falls in a semi-open interval [0, TBO). Thus,
the outcome of mod TBO(path length) is periodic with a period TBO, and hence
t = 0 and t = TBO are equivalent points.

The mod TBO operation is of particular importance, because it defines
Latest Finish (LF) and Earliest Start (ES) of related nodes in the TGP
diagram. The mod TBO operation will be used in the development of the
resource envelope in Chapter 3. As an example, if TBO is equal to 3, and path
length is 8, then mod TBO(path length) is remainder(8/3) which is equal to 2.
If path length is either 4, 7, or 10, then mod TBO(path length) = 1. If path
length is either 3, 6, or 9, then mod TBO(path length) is equal to 0 since
remainder(path length/TBO) gives 0.

The integer(path length/TBO) operation gives the number of complete
wrappings of path in the TGP diagram, and it shows the packet number at the
end of path relative to the current data packet. For the current data packet,
if the path does not extend to the next wrapping, the data packet at the end
of path is the current data packet even if the path extends over a complete

TBO time interval. The integer(path length/TBO) operation is defined as

Path Length -Mod TBO (2.2)

Integer (Path Length/TBO) = —

This operation is utilized to find the data packet number relative to the

current data packet of each resource boundary. Assuming that the current

49

data packet number is i, packet numbers corresponding to each resource
boundary may be found by subtracting the value of integer(path length/TBO)
from i. The relative data packet numbers may be, in turn, used in the
construction of the TGP diagram from the resource envelope, as will be
described in Chapter 3. This gives a general view of the TGP diagram for any
data packet i.

The k-boundary is defined as a boundary (in one TBO interval) across
which there is a net change in resource requirement by k. A positive value of
k represents an increase in resource requirement by k on immediate right of
position of k as compared to resources on immediate left. A negative value of
k represents a decrease in resource requirement by k on immediate right of
position of k as compared to resources on immediate left of boundary. The
value k = 0 represents no net change in number of resources, and hence it does
not contribute to a resource change boundary. The position of k-boundary is
determined by mod TBO(path length) operation for a waiting token
contributing k-boundary, where "path length" is the time to deposit of a
particular waiting token. Because of the use of mod TBO operation, the

position of each k-boundary varies in the range [0, TBO).

CHAPTER THREE
DEVELOPMENT OF ANALYTICAL RESOURCE UTILIZATION MODEL

3.1 Introduction

The development of the analytical resource utilization model is
presented in this chapter. This model is based on the path length evaluation
from the input to each of the waiting tokens in the AMG. The model allows
an analytical development of the TGP diagram. The model also allows
calculation of resource requirements and identification of resource limited
mode for the graphs with time varying and, consequently, conditional nodes.
It also allows an analytical determination of R, from the worst case analysis,
assuming that all the nodes in the graph take the maximum allocated time to
execute.

The analytical resource utilization model, which describes the evaluation
of the analytical resource envelope at steady state for one TBO time period, is
developed in Section 3.2. Consequently, the value of R_,, can be determined
analytically, as discussed in Section 3.2. Since the deposit times of the waiting
tokens are used in the development of the resource envelope, and relative
packet indexes are known, the TGP diagram can also be determined from the
analytical resource envelope, as discussed in Section 3.3. This approach, which

always gives the steady-state view of the TGP diagram, is a refinement to a

51
method of obtaining the TGP diagram by folding the SGP diagram [4]. The

analytical resource utilization model leads us to a method of finding the effect
of node time variation in the AMG on the peak resource requirement, which
is discussed in Section 3.4. It is found that the time varying nodes in an AMG
may cause the temporary (instantaneous) resource limited mode, and
subsequently, a preliminary approach for detecting and preventing resource
limited mode is presented. This may help in improving the system flexibility
by incorporating heterogeneous processors. An overview of the conditional
node model, and a method of mapping the conditional node graphs onto the
ATAMM model are presented in Section 3.5. Also the evaluation of resource
requirement for conditional node graphs under worst case analysis, and under

variable node times is discussed in this section.

3.2 Analytical Model for Resource Utilization

The development of the resource envelope from a given algorithm graph
basically utilizes the path length from the input to each of the waiting tokens
in the AMG. The waiting tokens define the boundaries across which one or
more nodes either start or finish execution. There may a change in the
resource requirement across these boundaries. Therefore, the evaluation of
these boundaries is important in developing the resource envelope.
Consequently, finding the positions of waiting tokens is the first, and crucial,

step in the determination of the resource envelope.

52
3.2.1 Waiting Tokens in AMG

In this section, the procedure for marking the waiting tokens in the
AMG is outlined. In a given AMG, it is necessary to mark the positions of
waiting tokens in order to visualize the change in the number of resources
across different regions in the TGP diagram, and subsequently to develop an
analytic method to define resource change boundaries in the TGP diagram.

Any node in the graph may be described as a fork node, a join node, a
simple node, a node in a self loop, or any combination of these. A fork node
may be defined as a node which has at least two immediate successors. A join
node may be defined as a node to which two or more edges are directed to it.
A simple node has only one incoming edge and one outgoing edge. A node in
a self loop has an outgoing edge which is also an incoming edge to the node.
Each node defines a boundary at which there may be a change in the number
of concurrent resource. All the incoming edges to a join node must have tokens
available before a join node can be fired. The time of token deposit on each
edge depends on the longest path from source node of the AMG to the node
outputing the token of interest. The path length of this longest path gives the
time with respect to the input at which the token is deposited on the edge
under consideration.

Since a node can be fired only after all the incoming edges have tokens,
the join node cannot be fired earlier than the longest of all the paths

terminating on the join node. This may cause tokens on the other edges

53

directed into the join node to wait depending upon the relative timing of the

nodes. This means that two or more resources are freed by two or more nodes

forming a join, and are replaced by a single resource utilized by the join node.

Thus, the join causes the resource requirement to decrease.

If more than one path from the input source to the join have the same

length, tokens are still assumed to wait on all except one edge, even if the

tokens arrive at the same time. This is done for consistency in further

analytical development. Consider the following special cases in the view point

of the presence of a waiting token.

1.

Source. The source is assumed to have no incoming edge. No token
wait on the outgoing edges because TBI (Time Between successive
Inputs) is set equal to TBO of the AMG, so the very first node is fired
as soon as the data packet from the source has been inputed.

Sink. The sink is assumed to have no outgoing edge, but has one or
more incoming edges. It is also assumed that the sink fires as soon as
it is enabled. However, all the incoming edges to the sink are marked
with waiting tokens, because completion of each predecessor of the sink
releases one resource and the sink itself does not consume a resource.
Graph with circuits. For the AMG containing circuits, the critical path
is found using the modified AMG. The edges on which tokens wait can
easily be determined by marking the critical path in AMG. Case 2 also

must be considered.

54
As an example, consider the AMG shown in Figure 3.1, and its

corresponding TGP diagram shown in Figure 3.2. Node 8 in the AMG is a join
node. The critical path is 1-4-5-8, the critical path length is 8.5, and TBO is
equal to 3. As marked in the AMG, three waiting tokens are present, one on
the edge directed from node 7 to node 8, second on the edge directed from node
3 to node 8, and a third on the edge directed from node 8 to the sink. The
location of first two waiting tokens are found noting that node 8 is a join node
at which three edges are terminated, and one out of three (from node 5 to node
8) is on the critical path. Node 1 is a fork node because it has three edges
directed out without waiting token. Successors of node 1, nodes 2, 4 and 6, fire
at the same time when node 1 finishes. The completion of node 1 frees up one
resource and, at the same time, three more resources are utilized by nodes 2,
4, and 6. The resource requirement increases at the boundary given by the
time at which node 1 completes. Of interest is the analytical evaluation of
these boundaries to replace the graphical representation as shown in Figure

3.2.

3.2.2 K-Boundaries

In the previous section, the positions of waiting tokens in the AMG were
shown to be determined by searching for the longest path from the input
source to a particular node. K-boundary is a boundary, in the TGP diagram,

across which there is a net change in resource requirement by k. K-boundaries

*SUdY0) Junrem jo 3daduod aY) Aeysn(l 03 HNY sjdwrexy °1°g danSig

usyo], Sunrep - @

oS

g1

A

o

1

IS

"§ = O4L YN T°¢ 3an31g Jo HIV 10) wreadeip 49J, oYL "3'¢ sandiy

IS
(1-)
eS 1y 23
T @ () s
¢=yd . ¥=19 : ¢=9 . V=14 ” ¢=9 - ¥=T19
T+d | d . T+ | d | T+d | d
€ ” _ _
W], <€ :) N_ ! 0
: _ “ 2L
: ed |
- N O
” g0 §
| ¢
-8 T 2 . > 4
eV ol
. Y

57

are associated with resource changes (either increase or decrease) in the TGP
diagram. The k-boundaries are helpful in determining the analytical view of
the TGP diagram (in a view of number of resources) for a given graph, which
gives an analytical model for the resource envelope.

Let us define the following notations:

N = Total Number of nodes in the AMG
m = Number of edges outgoing from each node
T = Number of edges on which tokens wait out of "m" edges from each node.

The variable T ranges from 0 to m.

k = Net change in number of resources immediately after a node finishes.

"k" ranges from -1 to m-1.

For any node, if T = m, token waits on each outgoing edge. The resource
utilized by this node is not used immediately by any other node when the node
completes. Thus, there is a net decrease by one in number of resources
immediately after the node completes. The net decrease by one is represented
by negative k value, which is equal to -1.

If T = m-1, tokens wait on all except one outgoing edge. When the node
finishes, a resource used by this node is utilized by its successor which fires
immediately. Thus, there is a replacement of resource, and the net change in
number of resources is zero (k = 0).

If T = 0, all the "m" successors of the node fire at the same time when

a node completes, utilizing "m" number of resources. However, one resource

58

is freed by the predecessor. This causes a net increase of m-1 in number of
resources.

If T = m-2, tokens wait on all except two outgoing edges. When the node
completes, two nodes are fired immediately.: Therefore, one resource is
replaced by two, and the net increase is 1.

For a given m and T, we may summarize:

k=m-T-1,

which is valid for any value of m and T.

3.2.3 Resource Use Boundaries and Resource Envelope

K-value is the value of k associated with each k-boundary. The concept
of k-values and k-boundaries is useful in further analytic development of the
resource envelope and the variable node time model. In the previous section,
we have identified the k-boundaries for any given AMG. In this section, we
will utilize k-boundaries to define S; and A, boundaries, and to develop an
analytical form of the resource envelope.

Out of all the k-values (one for each node), only non-zero values of k are
to be considered to establish a "resource use boundary” because only these
values of k cause a net change in the number of resources. The trivial case
where k = 0 causes a replacement of resource, so it is not considered in forming

resource use boundaries.

59

The following information has now been identified:
1. All the non-zero k-values and a node associated with each of them.
2. The longest path from the input source to the node corresponding to
each non-zero k-value.
From (2) above, we can find corresponding modulo-TBO (mod TBO) values
using-
Mod TBO(path length) = Remainder(path length/TBO).

As discussed in Chapter 2, the mod TBO operation on the path length
gives the relative path length within one TBO time interval in the TGP frame.
It gives the time at which the path ends in the TGP diagram. By definition,
mod TBO value lies in the interval [0, TBO). Define

S; = Boundary across which k = -1 (Subtraction), and
A, = Boundary across which k > 1 (Addition).

Each S, and A, has a k-value associated with it. Also they represent
boundaries in the TGP diagram across which the number of resources change
by a value of k. Having found mod TBO values for each S, and A,, these values
may be ordered in an increasing manner, from 0 to TBO". In other words, the
S, and A, boundaries are positioned in an increasing order in the TBO time
frame, incorporating k-value for each boundary as a superscript. We now have
enough information, in the form of an ordered array, from which the number
of resources utilized at any time in the TBO time frame can be found out as

outlined in the following.

60

Let us consider a general form of a sequence of S, and A, boundaries, as

shown below.

In the ordered list shown above, m and n are known, and subscripts i, j, and
k are used to show generalization. It is important to note that there is no net
increase or decrease of resources across one TBO time frame in the TGP
diagram, i.e., a resource can neither be created nor be destroyed.

Assume that the number of resources (R) on the very start of the TGP
diagram (on the immediate right of t = 0 in the TGP diagram) is equal to P.
S, causes a decrease in number of resources by 1, so R = P-1 on the immediate
right of S;. A" and S,,,"" overlap each other. There is a net increase of n-1
across these boundaries since A; causes an increase by n and S, causes a
decrease by 1. Therefore, R = P-1+n-1 = P+n-2 on the immediate right of S,,,.
Similarly, R = P+n-3 on the immediate right of S,,,. Following the same
procedure, we find resource values in terms of P across each boundary in the

ordered array. The maximum R value corresponds to R__, and all other R

max?

values are indexed by R,,,. For example, ifR_, = P+n-2,thenR=P-1=R_, -

n+l, R =P+n-3 = R__-1, and so on.

61

It is important to note that the number of resources about minimum and
maximum time values (about t = 0 and t = TBO) must be same due to the
periodicity of mod TBO operation. In other words, the number of resources at
t =0 and t = 0" must be equal to the number of resources at t = TBO and t
= TBO", respectively. In general, boundary conditions are satisfied for any
time slot (t = n to t = n+TBO) of width TBO. If we consider t = 0* and t =
TBO" values in the current data packet, then t = TBO* and t = 0" may be
considered as corresponding values in the next data packet.

The number of resources at t = 0* can be determined from the number
of resources at t = 0" since k-value(s) of any S, or A, boundaries, if it exists at
t = 0 (or t = TBO), is known, and the number of immediate successor node(s)
of the source is also known. The number of immediate successor node(s) of the
source represents the number of new processor assignments at the beginning
of each TGP time frame (at t = 0). If, in a given AMG, there are S, successors
of the source, then the resource requirement at t = 0* is increased by S, as
compared to the resource requirement at t = 0, in addition to either increase
or decrease given by the sum of k-values of boundaries existing at t = 0". This
may be written as-

R(t =0 =R (t =0)+ Sg + [k-values of boundaries at t = 0],
where square bracket around the last term is used to identify that this term

may or may not exist. Since the number of resources at t = 0" (or t = TBO") is

62

known, number of resources at t = 0* can be found using the above equation,
which must be equal to the number of resources at t = TBO"*.

The ordered boundary information is now what otherwise would have
been conveyed by the resource envelope, or the TGP diagram. For the AMG
shown in Figure 3.1, this information is displayed below, and the A; and S,
boundaries are marked in the TGP diagram of the AMG as shown in Figure

3.2.

It is noted that R = R_,,. The resource requirement from t = 0" to t = 0*
increases by one (Sg*") because of one immediate successor (node 1) of source
node. From the analytical model of the resource envelope, the value of R,...

may be computed as will be discussed in the following section.

3.24 R, from Worst Case Analysis
In this section, a method for computing the value of R_, from the
analytical resource envelope, developed in the previous section, is presented

(without drawing of the TGP diagram). The value of R_,, corresponds to the

63

worst case analysis assuming that all the nodes in the graph take the
maximum allocated time to complete. Define
n = Number of boundaries at distinct times in the array, or the number of
"t" values (corresponds to S; and A)) in array.
t; = Distinct "t" values corresponding to boundaries marked in the array.
The maximum value of t; is equal to TBO", and i = 0 to n.
R, = Number of resources utilized in each time slot between two t,.
t, = Time at which right-most boundary is located in the array, or the time
position of right-most k-boundary in the analytical resource envelope.
The summation of all node times in the AMG defines Total Computing
Time or Total Computing Effort (TCE). It is observed that TCE events occur
in one TBO period. Thus, TCE must be equal to the sum of product of the
time duration of each slot in the TGP diagram and the corresponding number
of resources utilized in a particular slot.
If the number of distinct k-boundaries is equal to n, then

n
TCE.—_E R; [ty -1, (3.1)

i=0

where t;, = 0, and t,,;, = TBO. Since t; and TCE are known, and R, is known in

terms of R = R, Equation 3.1 can be solved for the unknown R =R__,.

64
3.2.5 An Illustrative Example

As an illustration of the method for development of the resource
envelope, consider the AMG shown in Figure 3.3. The critical path is A-B-E-C-
D-J as shown by dark lines in the figure, and the critical path length is 14.
Also, TCE = 17.75 and TBO = 3. To find the position of waiting tokens,
consider each node which has two or more edges directed to it. Find the path
length to the node for each incoming edge, and mark the waiting token on each
incoming edge except one which has maximum value of the path length. If two
or more incoming edges have equal maximum value, then mark a waiting
token on all except any one edge.

For a given AMG, a waiting token is present on the edge from node G
to node E, because node E cannot start until nodes B and G are finished, and
the path length A-B is greater than the path length A-G, i.e., (t, + tg) > (t, +
tc). Similarly, at node F, (t, + tz + tg) > (t, + t; + ty), therefore a waiting token
1s marked on the edge directed from node H to node F. Other waiting tokens
are marked in the AMG by following similar argument. A waiting token is
also marked on the edge from node J to the sink S,, since the completion of
node J releases one resource which is not utilized by the sink.

After marking all the waiting tokens in the AMG, we construct the
resource envelope table as shown by Table 3.1. In this table, each row
corresponds to each node in the AMG. The first column shows the nodes in the

AMG, the second column gives the value of m (number of edges directed out

65

‘uoyexISN[[I 10j HNY sjdurexs uy ‘g g aandig

uayo, Sunrep - @

yIed [eanu) - pqOAIV

Gg1=n go=H GLo=9%

66

Node | m T | k=m-T-1 | Boundary | Path Length | Mod TBO
A 2 0 1 A 1.5 1.5
B 2 1 0 -

C 1 0 0 -

D 1 0 0 -

E 2 0 1 A, 5 2
F 2 2 -1 S, 6.25 0.25
G 2 1 0 -

H 2 1 0 -

I 1 1 -1 , 4 1
J 1 1 -1 S, 14 2

Table 3.1. The resource envelope table showing k-values
and boundaries for the AMG of Figure 3.3.

67

from each node), the third column gives the value of T (number of edges out
of m which contains waiting tokens) for each node, and in the forth column the
value of k is calculated for each node using k = m-T-1. In "Boundary" column,
different resource boundaries are named, using the notation A, (Addition) for
positive value of k and S, (Subtraction) for negative value of k. Trivialk = 0
value is discarded. In the next column the path length for each boundary is
noted, considering the path without any waiting token. In the last column the
mod TBO values of path lengths are found.

Table 3.1 shows k-value for each node, A; and S, boundaries, the path
length from the input source to corresponding node, and mod TBO value of the
path length for the AMG given in Figure 3.3. The A, and S, boundaries are
ordered, using the corresponding mod TBO values and ordering in an
increasing manner, as shown in Figure 3.4. Here, the superscript of a
boundary represents its k value, and subscript represents boundary
numbering. Assuming P resources at the left-most point in the TGP frame, we
find resources in each time slot, knowing the amount of increase and decrease
at each A and S, boundary. These resource values are then indexed to R=R_,
as shown in the figure, since R, is the number of resources for which the
system is designed.

Figure 3.4 provides the complete information about the total resource

envelope for the given graph. It is an analytical view of the resource envelope

68

t=0 025 1.0 1.5 2.0 3.0
1 (. (. ' G
gt S At Ss
' N A§+1)
SSI(+) .
P1: p P-1 P-2 P-1 P-1
R-1. R R-1 R-2 R-1 R-1

Figure 3.4. Ordered array of boundaries and resources
in different regions for the AMG of Figure 3.3.

69

as opposed to the pictorial view. Using Equation 3.1 and information given in
Figure 3.4, R = R_,, can be determined as follows:
TCE = 17.75 = R (0.25-0) + (R-1) (1.0-0.25) + (R-2) (1.5-1.0) + (R-1) (2.0-1.5) +
(R-1) (3.0-2.0)
17.75 =3 R - 3.25, or
3R =21, 0r
R=7=R,,

The analytical resource envelope may be compared with the pictorial
view of the resource envelope obtained using the Design Tool, as shown in
Figure 3.5. Comparing the value of resources in different time slots in Figure
3.4 with those in Figure 3.5, it is seen that theoretical results match with the
experimental results. Also, the value of R_,, obtained from Figure 3.4 and

Figure 3.5 are the same.

3.3 Development of the TGP Diagram

A method for the development of the TGP diagram from the analytical
resource envelope is presented in this section. This method is important
because it is easier to draw the TGP diagram for a very large graph, a graph
with forward initial tokens, or a graph with circuits without any error. This
method may be considered as an alternative method of drawing the TGP
diagram to the previous method in which the TGP diagram is drawn using the

SGP diagram by folding it around about one TBO time interval.

Graph 1

)

g R,
p e SR

TIME 0 (12

tool,

esign

The TRE for the AMG of Figure 3.3 oblained using the d

Figure 3.5,

70

71
3.3.1 Method Development

As discussed in Chapter 2, the TGP diagram provides information
regarding the predecessor-successor relationship for each node in the graph.
It displays the execution of each node of a graph when the graph is operating
periodically in steady-state with period TBO. The necessary information for
the development of the TGP diagram may also be obtained directly from the
analytical resource envelope developed in the previous section, since it provides
the path length to each node, and also the time instant in one TBO frame
(from mod TBO operation) which corresponds to the completion of a node.

The data packet dependency for each node relative to the current data
packet is also represented in the TGP diagram. The data packet number for
each node may be determined from the analytical resource envelope using the
integer(path length) operation. In this operation, as defined by Equation 2.2,
we divide the path length to a node by TBO, and take an integer value of the
result. If we assume the current data packet number be i, then data packet
corresponding to each node in the TGP diagram may be determined relative
to data packet i by subtracting integer(path length) value for each node from
i. As for example, if the path length to a node is 7, and TBO = 3, then
integer(7/3) is equal to 2, and the data packet of this node relative to the
current data packet i is 1-2.

Since the time at which each node finishes in one TBO frame, and the

data packet for each node may be determined from the analytical resource

72

envelope, as outlined above, we may construct the TGP diagram directly from
the analytical resource envelope. In the analytical resource envelope, the A,
boundaries are formed due to forks, and the S, boundaries are formed due joins
in the graph. In finding the path length to each join node, times of all the
nodes in the path are summed. Thus, each node in a graph is taken into
account if we consider all S, boundaries. An exception to this is when neither
of the S; boundary corresponds to the join immediately before the sink, in
which case this join node is not taken into account. To incorporate this join
node, we also consider the critical path in addition to all S, boundaries, since
the critical path also takes into account the left over join node.

To summarize, the TGP diagram for the AMG may be constructed using
integer(path length) data of a node corresponding to each S, boundary and the
critical path, and a given graph. These provide information regarding data

packet indexing and predecessor-successor relationship respectively.

3.3.2 Method Description
A method for the development of the TGP diagram from the analytical

resource envelope is outlined in the following.

1. Since the path length for each node which contributes to an S, boundary
is known, its integer(path length) value may be found using Equation
2.2. If the path length is an integer multiple of TBO, i.e. path length =

n TBO, then integer(path length) = n-1.

73

2. Assuming that the current data packet is i, data packet index for each
of the above node is found by subtracting its integer(path length) value
from i, i.e., data packet index for a node = current data packet i - integer
(path length).

3. The critical path, TBIO, and TBO may be found directly from the given
AMG.

4, Since mod TBO(path length) for each node contributing S; is known
(which gives the time at which the node finishes in one TBO frame), we
draw the path ending at the time given by its mod TBO value,
traversing backwards (going upwards in the TGP diagram) with a length
equal to the corresponding node time, and considering each node in the
path in a reverse manner until we reach at the starting node of the
path. Also, mark the last node in the path (node contributing to S;) with
a packet index of its corresponding integer(path length) value, and
increase the packet index by one for nodes in each of the upper layers.

5. Repeat step 4 for each S; boundary and the critical path, and ignore any

duplication of a node in the TGP diagram.

3.3.3 An Illustrative Example
For a given AMG, the TGP diagram may be constructed using the
method outlined in the previous sub-section. As an illustration of this method,

consider the AMG shown in Figure 3.3, and its resource envelope table shown

74

in Table 3.1. From the last row in Table 3.1 (row for node J), it reveals that
the critical path is taken into account in S, since node J is last node in the
critical path. Therefore, the TGP diagram may be constructed using only S;
boundaries. Table 3.1 is modified as shown in Table 3.2, which is self-
explanatory. This table is used to construct the TGP diagram as outlined in
the following.

Consider first the boundary S;. Its mod TBO and integer(path length)
values are equal to 2 and 4, respectively. Therefore, in one TBO time frame,
start drawing a line segment for node J at time = 2, packet number i-4, and
going backwards (upwards in the TGP diagram) for t; = 3. Then, predecessor
of node J which does not deposit a waiting token on the edge directed to node
J (in this case, node D) is drawn. Accordingly, line segments for nodes C, E,
B, and A are drawn in a reverse fashion with appropriate data packet number.

Now, consider the boundary S, which constitutes the path A-B-E-F.
From Table 3.2, it is seen that node F finishes at time = 0.25 in the TGP frame
with a data packet of i-2. Therefore, draw a line segment for node F, starting
at time = 0.25 with data packet number i-2, and going backwards. Since the
line segments for nodes A, B, and E are already drawn using S,, they are
redundant, and are not considered. Thus, S, gives new information regarding
only node F.

Consider the boundary S, which constitutes the path A-G-H-I, and

located at a point where node I finishes. From table 3.2, node I finishes at

75

Node | Boundary | Path Length Mod Int.(PL/TBO) Relative
TBO Data
Packet
No.
F S, 6.25 0.25 2 i-2
I S, 4 1 i-1
J S, 14 2 4 i-4

Table 3.2. The modified resource envelope table for the construction

of the TGP diagram of the AMG of Figure 3.3.

76

time = 1 with data packet of i-1. Therefore, draw a line segment of length t,
= 1.25 starting at time = 1 in one TBO frame, with data packet of i-1, and
going backwards. Similarly, draw line segments for node H and node G of
lengths t;; = 0.5 and t; = 0.75, respectively. The line segment for node A is
already drawn, so it is not considered. Thus, S, gives additional information
in terms of nodes G, H, and I. The complete TGP diagram obtained by
following the above procedure is shown in Figure 3.6.

This method gives the steady state TGP diagram for a given AMG, and

is very useful for the AMG with high complexity.

3.4 Time Varying Nodes and Resource Limited Mode

In the Section 3.2, enough background has been developed in terms of
the analytical resource envelope so that we may consider to develop the
variable node time model, as presented in this section. This model is
important because many real-time algorithms require variable node times for
reasons such as heterogeneous processors, data dependent code execution, and
time varying deadlines for the completion of a job. The execution of graphs
with time varying nodes is investigated with a point of view of the change in
number of resources. A method for the detection of a possible resource limited

mode is discussed, and also a method for its subsequent prevention is outlined.

77

*a[qe) 9d0[2AUd 30aN0SAT 9Y) WOI
PIONNSU0D g°g 3INIL] JO HV Y} A0] WRAZBIP 4D 9Y], ‘9'g dand1g

€ (4 T 0
ouIry, <
_ ” -
><€ ><—— > : <—
~H .H.H _w Z ~rm
(-l “ |
| il
m.whu) m.mﬁ_ﬂn
N;Q , z _O
[0 -1 1.1
q 4
\4

78
3.4.1 Resource Limited Mode

The multicomputer system is said to be running in resource limited
mode if a resource required during algorithm execution is not available in the
system. When a node finishes early, there may be an increase in resource
requirements in excess of that required under fixed node time conditions.
Generally the system is designed for the number of resources necessary for
fixed maximum node times in the graph. Now if for some reason the node time
decreases, which in turn may cause an increase in the resource requirement,
then the system runs into resource limited mode. The resource limited mode
of the system needs to be prevented because it causes the system time
performance to become unpredictable. Therefore, a method will be developed
in the following sections to detect the presence of resource limited mode and
subsequently, to modify the graph in such a way as to prevent the system from

going into the resource limited mode.

3.4.2 Graph Topology Considerations
The overall topology of the graph is an important contributor factor in
resource limited mode. Thus, the presence of resource limited mode depends
on the structure of the graph, as well as the timing of each node in the graph.
A node which has at least two immediate successors is called a "fork
node”. The combination of a fork node and its successors is called a "fork".

The basic property of the fork is to increase the resource requirement in the

79
TGP frame to the immediate right of the boundary at which the fork node

finishes. For example, consider a fork node with three successors. Let the
number of resources to the immediate left of the point where fork node finishes
be S. Then, the number of resources to the immediate right of this point
equals S+2, since an increase by two number of resources is encountered across
the boundary where the fork node finishes. If the fork node goes short, then
the three successor nodes start early at a point in time beginning at the left
of this boundary and hence two extra resources may now also be executing in
addition to the S resources already being used. If the requirement for extra
resources causes the number of resources required to be greater than R__, (the
maximum number of resources for which the system is designed), then the
system is driven into resource limited mode.

Suppose that without any node time variation (fork nodes finishing at
maximum allowable time), the number of resources required is equal to R for
which the system is designed. When the fork node finishes earlier than its
scheduled finish time (under any node time variation), the number of resources
required may become greater than R for short time duration. The system is
driven into resource limited mode due to unavailability of extra resource(s).

Another important graph attribute of the AMG is a "join". The node at
which token waits on at least one of the incoming edges is called a "join node".
In other words, a join node may be defined as a node at which two or more

edges are directed to it. When more than one edges terminate at a particular

80

node, tokens wait on all except one edge. The combination of a "join node" and
its predecessors defines a "join". An important feature of a join is that the
resource requirement may decrease where the join node starts in the TGP
diagram.

The behavior of variable node time AMG is investigated in the following
sub-sections in the view of resource limited mode, and its subsequent
prevention. The approach taken is to observe the change in number of
resources when each A, boundary in the analytical resource envelope is shifted

towards left, as outlined in the following section.

3.4.3 Necessary Condition for Resource Limited Mode

In this section, a necessary condition for the presence of resource limited
mode is described. This will be useful in developing a method for the
prevention of resource limited mode, as will be seen in the following sectjon.

An A"* boundary is one to the immediate right of which the number of
resources required increases by k in the TGP diagram. Consider a case of
shifting an A, boundary towards the left. (If any A, boundary is located at time
t = 0, its shift towards left is folded over at t = TBO" and then shifted to the
left). This causes the requirement of k extra resources to the left of A, in the
TGP diagram. Ifin any time period over which A, may be shifted in the TGP
diagram, the maximum resource requirement appears to be greater than or

equal to R_,,-k+1, then the requirement of k extra resources increases the total

81

number of resources to be greater than or equal to R_, +1. However, the
system is designed for R_,, resources, which is now less than the peak resource
requirement. Therefore, the system is driven into resource limited mode.
Thus we may conclude that for any A, boundary, if decreasing the path
length corresponding to A, over possible range causes the total resource
requirement to be greater than R__ , then the system is driven into resource
limited mode. A cause of decrease of a path length may be non-homogeneous

resources, variable node times, data dependent code, and many others.

3.4.4 Prevention of Resource Limited Mode

In this section, sufficient conditions are deve}loped for inserting the
control edges for eliminating resource limited mode due to node time
variations.

When an A, boundary shifts towards the left, it may or may not cause
resource limited mode. We first develop a method of determining whether an
A; boundary may possibly cause resource limited mode, and then insert
necessary control edges to prevent resource limited mode. Define
+k = Increase in number of resources across A,

J = Index relative to R = R, used to represent resources utilized in
different time slots, and

t; = Time location of different boundaries in one TBO time frame.

82

For each A, observe if moving A, across S; causes the resource requirement to
be greater than R,,,. If it does, find the amount of increase beyond R_,,, and
denote it by R,,.. Then,

R.,.=R,-+kK-R_,, =k-j
where k = k-value for A, under consideration, and j = resource index on the
immediate left of S; (which is to be crossed).

The number of control edges necessary for any A, boundary, # CE, is
given by,

#CE =R, - (# CE already determined for A, under consideration).

As an example, consider the array shown in Section 3.2.3. The number of
control edges are determined as follows.

ForAj(t=0t01,k=3),#CE(S;,j=2)=3-2-0=1, and
#CE@S,j=1)=3-1-1=1.

For A, (t=0t025 k=2),#CE(S,,j=1)=2-1-0=1, and
#CE@S,,j=0=2-0-1=1.

The upper limit of the sum of # CE for any A, is equal to the k-value of

that particular A;, which is equal to 3 and 2 for A, and A, respectively.

3.4.5 Placement of Control Edges
In this section, a procedure for inserting control edges for the prevention

of resource limited mode is outlined. After finding the required number of

83

control edges as described in the previous section, we insert them

appropriately in the AMG using the method outlined below.

1.

Identify the successor nodes (S_NODES,;) of a node in the AMG which
corresponds to an A, boundary.

Identify a node in the AMG (NODEg) which corresponds to an S,
boundary. The number of control edges required for an S, is found to be
equal to # CE (S)).

Insert control edge(s) from NODE to one or more S_NODES,, the
number being equal to # CE (S;). The S_NODES,, to which control edges
are directed from NODEg won’t start their execution until NODE
finishes. This prevents the resources to be utilized by them from moving
to the left of the S, boundary.

Following the same method for each A, - S, combination determined
above, resource limited mode may be prevented under any node time
variation.

The insertion of control edges may form circuits in the graph, and

therefore changes the value of TBO. To retain the original value of TBO, we

increase the queue size for each control edge. Moreover, initial tokens must

be appropriately placed on a control edge for the initiation of graph play.

84
3.4.6 An Illustrative Example

As an example, consider the AMG given in Figure 3.3. The behavior of
this AMG with any node time variation is investigated in this section in a view
of resource limited mode and its prevention.

Consider the analytical resource envelope as shown in Figure 3.4.
Consider shifting of A, boundary to the left. Since A, is contributed by node
A, t, = 1.5, and mod TBO = 1.5, the range of variation of A, is between t = 0
and t = 1.5, as shown in Table 3.3. Now if A, is shifted in the region between
t =0 and t = 0.25 (in which number of resources = R = R__), or if the S,
boundary is crossed, extra resource requirement due to A, causes total
resources requirement to be greater than R, therefore resource limited mode
occurs. This may be prevented by inserting a control edge directed from the
node which contributes S, (node F) to any one successor of the node which
contributes A, (node B or node G).

Now consider shifting of A, boundary to the left. Since A, is contributed
by node E, and t; = 0.5, and mod TBO = 2, the range of variation of A, is
between t = 1.5 and t = 2, as shown in Table 3.3. In this time region, the
number of resources are R_ -1, therefore the increase of one in number of
resources if A, is shifted to the left causes the resource requirement tobe R_,,.
Therefore shifting A, won’t cause resource limited mode.

To summarize, the number of control edges for all the S; boundaries in

the range of variation of each A, boundary are found as follows:

=0 t,=0.25 =1.0 t,=1.5 t,=2.0
Boundaries - S, S, A, S,
A,
Latest start 1.5-t, 2.0 - tg
of A, = Mod - - - =15-15|=2.0-0.5
TBO [t{A} - = =15
t{NODE,}]

85

Table 3.3. Finding the possible range of variation of A, boundaries
in one TGP frame for the AMG of Figure 3.3.

86

For A, (k = 1) S;,G=1)=1-1-0=0

S5,G=0=1-0-0=1

For A, (k = 1): S;G=1)=1-1-0=0
Thus, one control edge is required for preventing a possible resource limited
mode, which may be inserted starting from node F directed to either node B
or G, with appropriate initial token and queue size. The AMG with a control

edge from node F to node G is shown in Figure 3.7.

3.5 Conditional Node Model

An overview of the conditional node model is presented in this section.
An algorithm graph with conditional nodes is studied, and a possible reduction
of a conditional node graph to a time varying node graph is described. Basic
modifications necessary for mapping the conditional node graph on the
ATAMM based architectures are presented, and finally an examplg of
conditional node graph is given in which conditional node graph is investigated
using the variable node time model.

It is assumed that each conditional node has a capability of making
decisions depending upon certain data conditions. This capability is derived
from the executable code embedded in the node itself. It is also assumed that
only one of the several outgoing paths is chosen for execution by each
conditional node, and there is no restriction on the number of conditional nodes

in an AMG. Also, the probability of execution of any conditional path, in one

87

‘9poul PAPTWI] I2INOSII
JudAdxd 0) P)IISUl IZPI [0IIU0D B YIIM g°¢ danJ1g JO HINV oYL, °L'g sandig

uayo], Sunem - @

uoyo, feru] - O
agdpy jonyuo) - - - - -

IS

88
particular run of the AMG, is moderately greater than zero, and all conditional

paths are executed at nearly same frequency. The decision making process

resembles branching such as a "case" statement.

3.5.1 Overview

In many practical applications, it is necessary to change the flow of
execution of algorithm depending on the existence of certain condition(s). For
example, a portion of the algorithm may change from one range of the data
values to another. For these type of applications, the AMG implementation of
an algorithm may contain one or more conditional branches (forks). For any
conditional branch, only one of the several possible alternative paths is
executed when a particular data condition occurs, all other paths being
inactive. Also, a jump from one conditional path into the other is not allowed.
Intuitively, the conditional branch has at least two alternative paths. Each
alternative path may contain any number of nodes in it. A node which
initiates a conditional branch is called the conditional (fork) node. When a
conditional node finishes, its data output is given to all of its successors. Now,
depending upon the data conditions at the output of conditional node, any one
of its successors starts its execution and it continues for the rest of the path.
The remaining successor nodes (for which data condition is not satisfied) do not
execute, but they just pass the data packet to their corresponding successors

in the path.

89

Since only one of the several nodes at the same level in a conditional
branch is executed, it is possible to combine these node into a single node by
grouping the executable code of each of these nodes in one node. Such a new
node may be viewed as a node with partitions, each partition containing the
code for one particular node, and any one of these partitions is executed in the
presence of any data conditions.

A partitioned node is assigned a node time which is found using a notion
of latest time to deposit a token at the output of a node. The latest time to
deposit a token at the output of a node is the longest path length from the
input source to the node. For a reduced graph with partitioned nodes, the
latest time to deposit is the maximum of all deposit times, one for each
partition. An equivalent node time, which is assigned to a partitioned node,
is found by subtracting the latest time to deposit at the input of the node from
the latest time to deposit at the output of the node. The latest time to deposit
at a particular edge represents the time, under the worst case, at which a
token may be deposited on the edge, when a conditional node AMG is executed.
Thus, the notion of latest time to deposit ensures a worst case analysis of the
execution of a conditional node graph. (A notion of latest time to deposit is
illustrated in Section 3.5.3, using a conditional node AMG). The TCE is
calculated by summing node times of all nodes in a reduced graph. The TCE
found from a reduced graph (instantaneous TCE) is used in the calculation of

R,.« from the analytical resource envelope.

90

A new node containing different partitions has to make a decision as to
which of its partitions is executed each time data is available at input of the
node. Therefore, it requires some basis to make this decision. One criteria
may be let the new node figure out in which execution block the conditional
node was in when output became availabie by viewing the status of some flags.
This criteria is time consuming and requires backward status information. An
easier and feasible approach may be to have the predecessor node provide
necessary information to make a decision. This may be done by incorporating
a status flag with each data packet, the value of which is determined by the
node outputing data packet in such a way as to reflect the partition number,
the code in which is to be executed next. Again, value of the status flag
depends on which of the several conditions has caused the output. Now each
node in the conditional branch checks the status flag when data packet is
available at its input, and executes the code in the partition reflected by the
status flag.

Since each node in the conditional branch has different partitions
containing different pieces of code, the node may take different time each time
it is executed. Therefore, each node in the conditional branch may be viewed

as a time varying node with a conditional execution.

91

3.5.2 Example for Illustration

Consider the conditional AMG shown in Figure 3.8. Assume that the
fork at node A is a conditional fork, and the top two paths (paths B-C and D-E)
are conditional. Therefore, one of the two possible paths is executed at any
time. The conditional AMG may be reduced to the AMG without any
conditional branching as shown in Figure 3.9. Here, node X is divided into two
partitions, which contain code for the successor nodes of a conditional node A
(B and D). Node Y also has two partitions; partition 1 and partition 2 contains
code for node C and node E, respectively. Partitions in a node are separated
by dotted lines within the node. Thus, four nodes in the conditional branch
shown in Figure 3.8 (nodes B, C, D, and E) are reduced to two nodes (nodes X
and Y), as shown in Figure 3.9.

In Figure 3.8, node F is common to both the conditional paths, i.e., node
F is always executed irrespeétive of the conditional path selected. Therefore,
node F is shown, in Figure 3.9, as a successor of node Y without any partition,
so that it is executed as soon as data at its input from either of the partitions
in node Y is available. Under a worst case, fire time of node F is equal to the
latest time to deposit at the input of node F, which is equal to 7 as shown in
Figure 3.9. Latest deposit times at different edges are shown along
corresponding edges. Node times of nodes X and Y are found as follows:
ty = latest deposit time at output of X - latest deposit time at input of X.

=7-4=3.

92

"DINV 9POoU [eUO}IPU0D 9y} Jo ajdwexd uy 'g'g aanSry

youeaq feuonipuop

IS

|1X |
ngy
Y
‘€

‘6

2d

onp

po

I3

de

Yq

Jo

uod ay)

nmp

uol

e

ou

op

NV

sY

oy

uM

ut

X |

aang

‘e

‘8

IS

94
Similarly, ty, =4 -2 = 2.
The edge from node A to node G is unconditional. Therefore, node G is always
executed as soon as node A finishes. Also, node H is always executed when
both node G and node F deposit tokens at the input of node H. Nodes G and
H in Figure 3.8 are equivalent to those in Figure 3.9.

After reduction, the conditional sub-graph is converted to a simple chain
sub-graph, as shown in Figure 3.9. The number in each partition of a node
represents the time to execute particular partition, and it corresponds to the
appropriate node time. One advantage of this reduction is that the reduced
graph is simpler to analyze for resource requirements. The second advantage
_is that the variable node time model may be utilized to obtain resource
requirement of a conditional node graph and to analyze conditional node graph
for resource limited mode. However, if node E is removed from the AMG of
Figure 3.8, then a reduced graph will have a partitioned node with its second
partition empty. Since some partitioned nodes may have null partitions, an
extra overhead is present due to unnecessary firing of the node, even for a null
partition.

The reduced equivalent AMG, shown in Figure 3.9, does not contain any
conditional branch or node, and it may be considered as the AMG with time
varying nodes, since partitioned nodes may take different execution times. For

this AMG, the analytical resource envelope, maximum resource requirement,

95

and behavior under node time variation may be found using the variable node
time model as described in the following.

The waiting tokens are marked in the AMG as shown in Figure 3.9.
Also, TBO = 3, TBIO = 10, the critical path is (A-X-Y-F-H), where subscript 2
represents the partition number for the critical path, and TCE = 13 (This is
the maximum instantaneous value of TCE considering ty = 2 and t, = 3). The
resource envelope table, showing k-values, and S; and A, boundaries is shown
in Table 3.4. In Figure 3.10, these boundaries are ordered in one TBO time
frame, and resources in each time slots are calculated. This figure represents
the analytical resource envelope. The value of R = R__, can be determined as
follows using Equation 3.1:

TCE =13

= R (1-0) + (R-1) (2-1) + (R-1) (3-2)

=3R-2 or
R =5=R,,

Now consider node time variation in the AMG of Figure 3.9. The
possible range of variation of A, boundary is found, as shown in Table 3.5. If
A, is shifted in the time slot in one TBO frame between t, = 0 and t, = 1, then
the increase in number of resource by one in this slot causes the total resource
requirement to be greater than R__ . Therefore, decrease in node time of node
A may cause resource limited mode. The control edges required to prevent

resource limited mode may be found as follows:

96

Node m T k=m-T-1 | Boundary | Path Length | Mod TBO
A 2 0 1 A, 2.0 2.0
X 1 0 0 -
Y 1 0 0 -
F 1 0 0 -
G 1 1 -1 S, 5.0 2.0
H 1 1 -1 S, 10.0 1.0
Table 3.4. The resource envelope table for the AMG of Figure 3.9.

t=0 1.0 2.0
1) (+1)
S (+1) S2 Al .
SI -
. ; s
P-1 P P-1 P-1
R-1 R R-1 R-1

Figure 3.10. The analytical view of the resource

envelope for the AMG of Figure 3.9.

3.0

97

t{NODE, }]

t,=0 t,=1.0 t,=2.0
Boundaries S, S,
- A,
Latest start of A, = 2.0 -t,
Mod TBO [t{A} - - - =2.0 - 2.0

Table 3.5. Finding the possible range of variation
of A, boundaries in one TGP frame for the

AMG of Figure 3.9.

98

99

For A, (k = 1, and variation between 0 and 2):

S,G=1)=1-1-0=0

S, G=0=1-0-0=1
Thus, one control edge is required to prevent resource limited mode. This
control edge may be directed from the node contributing to S, (node H) to any

one successor of node A (either node X or node G).

3.5.3 Example to Illustrate the Latest Time to Deposit in Conditional Graphs
Consider the conditional AMG shown in Figure 3.11. It contains a

conditional branch with two paths, and each path has three nodes. The

corresponding reduced graph with unconditional nodes is shown in Figure 3.12.

Here, nodes B and E are combined in node X, nodes C and F are combined in

node Y, and nodes D and G in node Z. Times to deposit from the source to the

output of nodes A, X, Y, and Z are shown in Figure 3.12. The latest timg to

deposit at each edge is the maximum of all deposit times shown on the edge.
Node times of nodes X, Y, and Z are found as follows:

tx = latest deposit time at output of X - latest deposit time at input of X
=200 - 100 = 100

Similarly, ty = 350 - 200 = 150, and t, = 600 - 350 = 250.

Node times of all other nodes remain unchanged. From the reduced graph, the

TCE is equal to 1000.

100

"}150dap 03 swy 353)8[3Y) APBAISN[[I 03 DUV SPOU [BUOHIPUOD y *TT°¢ danSig

youeag [EUOIPUO)

00T =1} 00€ = H}

IS

101

"11°¢ 8IN3L] Ul uMoys HINV dPoU [eUoHIpuod ayj Jo ydead poonpay ‘gI°'g 9angig

00T =1

00€ = H}

IS

102

A consideration of the latest time to deposit in finding equivalent node
times of the partitioned nodes provides a worst case analysis of conditional
node graphs, and resource requirements for the execution of conditional node

graphs may be found under a worst case.

CHAPTER FOUR
CASE STUDIES THROUGH SIMULATION/EXPERIMENTS

4.1 Introduction

In this chapter, case studies are performed on three different example
AMGs to illustrate the applicability of the resource utilization model and the
variable node time model. In Section 4.2, an AMG with three parallel paths
is investigated. The analytical resource envelope is evaluated, and conditions
for resource limited mode and its prevention are found. The AMG is simulated
and TREs are obtained under different AMG conditions for comparison with
the theoretical results. In Section 4.3, a graph with a circuit is investigated
under node time variation, and the same results are obtained as in Section 4.2.

A conditional node graph is studied in Section 4.4.

4.2 Case Study - I: A Graph with Three Parallel Paths

An AMG with three parallel paths, and node time variation is
investigated in this section. The AMGs with parallel paths are important
because of the possibility of high concurrence in the execution of tasks.
However, they possess a potential of resource limited mode under node time
variation. The AMG used in the first case study is shown in Figure 4.1. This

AMG has three parallel paths. Node times are allowed to vary to values less

104

'syjed [afered 9axy) Yy | Apnys aseod J0j HUV djdwexy °Ip aanSig

091 = 04.L
gy = 014.L
PEZT - Yied reonup

0§

0S1 =%

0S

05 =4

L =2

A

00T =9

00T =13

IS

105

than the maximum value assigned to the node. Performance and operating
conditions are based on these maximum node times.

For the AMG shown in Figure 4.1, the critical path is 1-2-3-4, and the
critical path length is 425. Also, TBO = 150 and TCE = 725. The waiting
tokens are marked in the AMG as shown in Figure 4.1.

The k-value for each node, significant k-values (those forming A, or S,
boundary), the path length from input to corresponding node, and mod TBO
value of the path length are presented in Table 4.1. In Table 4.2, these
boundaries are ordered with respect to mod TBO values (t,), and the allowable
range of variation of A; is calculated (with respect to one TBO frame).
Assuming P resources at the left-most point in the TGP frame, number of
resources in each time slot are found since the amount of increase and
decrease at each A, and S; boundary is known. Figure 4.2 shows an analytical
form of the TRE. From Figure 4.2 and using Equation 3.1, R = R, can be
determined as follows:

TCE = 725 = R(100-0) + R(125-100) + (R-1)(150-125)

=150 R - 25

or, R=R__ =5

From Figure 4.2, if A, is shifted to the left, it causes the resource
requirement to be equal to R+2. Consequently, the system is driven into

resource limited mode if the node time of node 1 falls below 100.

106

Node | m T k=m-T-1 | Boundary | Path Length | Mod TBO
1 3 0 2 A, 100 100
2 1 0 0 -
3 1 0 0 -
4 1 1 -1 S, 425 125
5 1 0 0 -
6 1 1 -1 S, 250 100
7 1 0 0 -
8 1 1 -1 S, 250 100

Table 4.1. The resource envelope table showing k-values and
boundaries for the AMG of Figure 4.1.

107

t,=0 t,=100 t,=125
Boundaries S, S,
- S,
A,
Latest start of A, = 100 - t,
Mod TBO [t{A,} - - = 100 - 100 -
t{NODE,,}] =0

Table 4.2. Finding the possible range of variation of
A, boundaries in one TBO time frame for
the AMG of Figure 4.1.

108

"T'¥ 2an3Lg JO HINV 8Y) J0J SUOL3da JUBISIIP Ul

S90INO0SAA PUB SILIEPUNO(JO ABLIE PAIIPIQ ‘g'p oandij

A

091

I-d

1)®

gcl

g
Q-vm

e
(1)

T
@)

001

Ay A

1SS
(T+)

109

The number of control edges for all S, boundaries in the range of

variation of A, boundary to prevent resource limited mode are found as:
ForA,(k=2); S,3G=0)=2-0-1=1,andS;j=0)=2-0-1=1.
Thus, two control edges are required to prevent a possible resource limited
mode, one for both S, and S,. The first control edge may be inserted from the
node corresponding to S, (node 6) to any one successor of node 1 (node 5), and
the second control edge may be inserted from the node contributing S; (node
8) tonode 7. An initial token is placed on each control edge to account for the
packet differential between the nodes.

The TRE for the AMG of Figure 4.1 without any node time variation is
shown in Figure 4.3 which is obtained using the ATAMM Design Tool (Version
2.1). This pictorial view of the TRE corresponds to the analytical TRE shown
in Figure 4.2. The Graph Description and Simulation Control (GDSC) file used
for the AMG of Figure 4.1 with node time variation is shown in Figure 4.4, and
the corresponding TRE obtained using System Simulator/Analyzer Version 2.6
(1987-88) is shown in Figure 4.5. From Figure 4.5, it is evident that a total
seven (7) resources are required if the node time of node 1 is varied. The AMG
may be modified, as shown in Figure 4.6, by inserting two control edges. The
GDSC file for the AMG of Figure 4.6 under node time variation is shown in
Figure 4.7. The TRE for the AMG of Figure 4.6 is shown in Figure 4.8, which
is obtained using the System Simulator and GDSC file of Figure 4.7. From

Figure 4.8, it is seen that even under node time variation a total five (5)

110

UONDLDA Wit} apou Aup noypm |y aanbiy jo 9Ny ay) 10§] 3yp ¢y omnbiy

(sZl) 0 ANILL

%

¥y

!
IIIIIIIIII |

051l
Sev
051

LPd 4

=T A2

1 ydein

| ydeis

BB jaEIe A HAVHOVAINIWINY IVAD 00 Ld bt 4 jou) ubisag WINYLY

111

Graph Description File for Case Study I

Graph with three parallel paths and time varying node 1
To find resource requirement under node time variation
TBO(GLB) = 150, TBIO(GLB) = 425

Nodes 8

Sources 1

Sinks 1

Places 11

Priority 48635721
Resources 8

Input 1
Output 4
Times
Read 20
Process 70
Write 10
Node 1
Inputs 1
Outputs 26 9
times
Read 20
Process 70 R 30
Write 10
Node 2
Inputs 2
Outputs 3
Time
Read 15
Process 50
Write 10
Node 3
Inputs 3
Outputs 4
Node 4
Inputs 4 8 11
Outputs 5

Figure 4.4. The GDSC file for the AMG of Figure 4.1 with time
varying node 1.

Time
Read 20
Process 120
Write 10

Node 5
Inputs 6
Outputs 7

Node 6

Inputs 7

Outputs 8

Time
Read 10
Process 30
Write 10

Node 7
Inputs 9
Outputs 10
Time
Read 10
Process 30
Write 10

Node 8
Inputs 10
Outputs 11

Source 1
Outputs 1
Time
Process 10
Write 130

Sink 2
Inputs 5
Time

Read 20

End

Figure 4.4. (Continued)

112

113

"UCI}DHIDA BWiE

opou spun |y 2anbiy jo gpy sy} 40} Y| Yy "Gy 2unbiy

L

210,

114

"OPOW Pa}iW| 82IN0SI
yuansud oy poyiasur sabpa jonuod yum | aunbiy jo 9py 8y

9y 3inbiy

usyuy
AHaow

115

GDSC File for AMG to eliminate resource limited mode
Graph with three parallel paths with two control edges inserted
TBO(GLB) = 150, TBIO(GLB) = 425

Nodes 8

Sources 1

Sinks 1

Places 13 # Increase by 2 due to two control edges
Priority 48635721

Resources 8

Input 1
Output 4
Times # Global time assignment #
Read 20
Process 70
Write 10
Node 1
Inputs 1
Outputs 26 9
times # Local time assignment #
Read 20
Process 70 R 30 # Time varying node #
Write 10
Node 2
Inputs 2
Outputs 3
Time
Read 15
Process 50
Write 10
Node 3
Inputs 3
Outputs 4
Node 4
Inputs 4 8 11
Outputs 5

Figure 4.7. The GDSC file for the AMG of Figure 4.6 to prevent
resource limited mode.

Time
Read 20
Process 120
Write 10

Node 5
Inputs 6 12
Outputs 7

Node 6
Inputs 7
Outputs 8 12
Time

Read 10
Process 30
Write 10
Node 7
Inputs 9 13
Outputs 10
Time
Read 10
Process 30
Write 10
Node 8
Inputs 10
Outputs 11 13
Source 1
Outputs 1
Time
Process 10
Write 130
Sink 2
Inputs 5
Time
Read 20
End

Figure 4.7. (Continued)

TBO - Read time of node 1

Read time of node 4

116

117

on,

1at

ime var

4.6 under node t

igure

of Fi

\
J

(3772)

The TRE for the AMC(

139
4.8,

]
g

Figure

T1

118

resources are required, which is equal to the maximum number of resources
in the system. Therefore, resource limited mode under node time variation is

eliminated.

4.3 Case Study - II: A Graph with a Circuit

An AMG with a closed loop (circuit) in it is investigated with time
varying nodes. The algorithm graphs with circuits are generally found in
digital signal processing and control applications. In a graph containing a
circuit, data from the predecessor cycle is needed for computation of a current
data packet. Figure 4.9 represents an example of a graph with a circuit. This
AMG is investigated under node time variation.

The critical path for a graph with a circuit may be found by using the
modified AMG method. Subsequently, for the AMG of Figure 4.9, the critical
path is found to be 1-8-9-4-5, and the critical path length (TBIO) is equal to
600. Also, the values of TBO and TCE are 500 and 1000, respectively. The
waiting tokens are marked in the AMG as shown in Figure 4.9.

The k-value for each node, significant k-values, resource boundaries, the
path length from input to the corresponding node, and its mod TBO value are
shown in Table 4.3. In Table 4.4, these boundaries are ordered with respect
to mod TBO values (t,), and the possible range of variation of A, in one TBO

interval is calculated. Assuming P resources at the left-most point in the TGP

119

NOID B YA JT APNYS 9580 J0§ HNY o[dwrexy ‘¢'p eandiq

005 = 04.L
009 = OI4.L
GY68T - Yred [ednL)

00T =8}

00T =9 00T =% 00T =&}

uayo], 3unleyy @
uayoy, ey O

00T = 4 001 =9

120

Node | m T k=m-T-1_l Boundary | Path Length I Mod TBO

1 ; 0 1 j A, 100 100

2 1 0 0 -

3 2 1 0 -

4 1 0 0 -

5 1 1 -1 S, 600 100

6 1 1 -1 S, 500 0

7 1 0 0 -

8 1 0 -

9 1 0 0 -

Table 4.3. The resource envelope table showing k-values and
boundaries for the AMG of Figure 4.7.

121

t,=0 t,=100
Boundaries S,
S, A,
Latest start of A, = 100 - t,
Mod TBO [t{A;} - - =100 - 100
t{NODE,;}] =0

Table 4.4. Finding the possible range of variation
of A boundaries in one TBO time frame
for the AMG of Figure 4.7.

122

frame, the number of resources in each time slot are found since the amount
of increase and decrease at each A, and S, boundary is known.

For AMG of Figure 4.9, the analytical resource envelope without any
node time variation is shown in Figure 4.10. It is seen that R = R, resources
are required for the entire TGP time frame. From Figure 4.10 and using
Equation 3.1, R = R, can be determined as follows:

TCE = 1000 = R(100-0) + R(500-100)

=500 R

or, R=R_, =2
From Figure 4.10, it is observed that if boundary A, is shifted to the left, the
resource requirement is increased to R+1 due to an increase of 1 caused by the
A, boundary. Consequently, the system is driven into resource limited mode
if the node time of node 1 falls below 100.

The number of control edges to prevent resource limited mode are fognd
as:

ForAj(k=1) S,g=0)=1-0-0=1.

Thus, one control edge is required to prevent a possible resource limited mode
due to node time variation of node 1. A control edge may be inserted from the
node corresponding to S, (node 5) to any one successor of node 1 (either node
2 or node 8). In the simulation, the control edge is inserted from node 5 to

node 8. An initial token is placed on the control edge.

123

"6'¥ 2314 JO DNV 9Y3} 10J SUOLFAX JUIIBYIP UY

S90INOSAI PUB SILIBPUNO(JO ABIIB PIIIPIO ‘OT'F dandirg

[aPgya

009

A

S
(1)

T
T+’

001

q el
d d
4
(19>
1SS

1+
ot

—

124
The TRE for the AMG of Figure 4.9 without any node time variation is

shown in Figure 4.11, which is obtained using the ATAMM Design Tool. The
pictorial view of the TRE shown in Figure 4.11 corresponds to the analytical
TRE shown in Figure 4.10. The GDSC file used for the AMG of Figure 4.9
with time varying node 1 is shown in Figure 4.12, and the corresponding TRE
is shown in Figure 4.13 which is obtained using the System Simulator. From
Figure 4.13, it is evident that a total three (3) resources are required if the
node time of node 1 is varied. The AMG may be modified, as shown in Figure
4.14, by inserting the control edge directed from node 5 to node 8. The GDSC
file for the AMG of Figure 4.14 under node time variation of node 1 is shown
in Figure 4.15, and the corresponding TRE obtained using the System
Simulator (Version 2.6) is shown in Figure 4.16. From Figure 4.16, it is seen
that a total two (2) resources are required even under node time variation
which is equal to the maximum number of resources in the system. Therefore,

resource limited mode under node time variation was eliminated for this case.

4.4 Case Study - III: A Conditional Node Graph

A conditional node AMG, and node time variation is investigated in this
section. The conditional node algorithm graphs are encountered in signal
processing and control applications. The AMG used for Case Study - III is
shown in Figure 4.17. This AMG has three parallel paths. However, top two

parallel paths are conditional paths. Any one of the top two parallel paths is

125

t
N
N
&N
iy
]
¥
2
T
g
4
]
3
9|
Z
=
é
o
o
Q
o
4
=4

F:

The TRE for the AMG of Figure 4.9 without any node time variation.

ATAMM Design Tool

411,

Figure

Nodes 9
Sources 1
Sinks 1
Places 12

Priority 546793821

Resources 2

Input 1

Output 5

Times
Read 20
Process 70
Write 10

Node 1

Inputs 1 7

Outputs 2 10

Times
Read 20
Process 70 R 50
Write 10

Node 2
Inputs 2
Outputs 3

Node 3
Inputs 3
Outputs 4 9

Node 4
Inputs 4 12
Outputs 5

Node 5
Inputs 5
Outputs 6

The AMG for Case Study - II
Graph with circuit. TBO(GLB) = 500. TBIO(GLB) = 600.
To Find TRE under Node Time Variation

Global time assignment

Local time assignment

Time variation of node 1

126

Figure 4.12. The GDSC file for the AMG of Figure 4.9 with time
varying node 1.

Node 6
Inputs 8
Outputs 7

Node 7
Inputs 9
Outputs 8

Node 8
Inputs 10
Outputs 11

Node 9
Inputs 11
Outputs 12
Times
Read 30
Process 150
Write 20

Source 1
Outputs 1
Time
Process 10
Write 480

Sink 2
Inputs 6
Time

Read 20

End

Local time assignment

Figure 4.12. (Continued)

127

Total

TIME 490 (11293)

The TRL for the AMG of Tigure 4.9 under node time variation.

4.135.

Figure

128

129

"IPOW PIJWI] 331IN0SII JudA3Id 0) g 3pOouU O} G Ipou

Wwouj payiosur sbpa |0UD2 Y} ypum £ aunbiy jo 9y Sy pLp o4nbiy

asmosg
A4100W

IS »—<GN = PN = EN »— ZN*— [N »—= | S

ylezany

130

The AMG for Case Study - II

Graph with circuit. TBO(GLB) = 500. TBIO(GLB) = 600.
Control edge (directed from node 5 to node 8) is added

to prevent resource limited mode

Nodes 9
Sources 1
Sinks 1
Places 13 # One control edge is added #
Priority 546793821
Resources 2
Input 1
Output 5
Times # Global time assignment #
Read 20
Process 70
Write 10

Node 1

Inputs 17

Outputs 2 10

Times # Local time assignment #
Read 20
Process 70 R 50 # Time varying node 1 #
Write 10

Node 2
Inputs 2
Outputs 3

Node 3
Inputs 3
Outputs 4 9

Node 4
Inputs 4 12
Outputs 5

Figure 4.15. The GDSC file for the AMG of Figure 4.14 of case
study II to prevent resource limited mode.

Node 5
Inputs 5
Outputs 6 13

Node 6
Inputs 8
Outputs 7

Node 7
Inputs 9
Outputs 8

Node 8
Inputs 10 13
Outputs 11

Node 9
Inputs 11
Outputs 12
Time
Read 30
Process 150
Write 20

Source 1
Outputs 1
Time
Process 10
Write 480

Sink 2
Inputs 6
Time

Read 20

End

Local time assignment

Figure 4.15. (Continued)

131

(11165)

490

I''ME

The TRE for the AMG of Figure 4.14 under node time variation.

iqure 4.16.

132

133

"III Apnys ased 10] HY Sjdwrexs apou [BUOHTPU0D V ‘LI'P oangdijg

youelq [euonpuoy - - - - -

usyo], Sunrem - @

0Ss

00T = H}

00z =5

A

00T = 9}

00T =93

IS

134

executed at a given time, but the bottom path is always executed since it is not
a part of the conditional branch.

An equivalent (reduced) AMG for the conditional node graph of Figure
4.17 is shown in Figure 4.18. Nodes B and D, and nodes C and E of Figure
4.17 are combined as node 2 and node 3 of Figure 4.18, respectively. The
latest times to deposit are shown along edges and, subsequently, node times
of partitioned nodes 2 and 3 are calculated. Nodes 1, 5, 6, and 4 in Figure 4.18
corresponds to nodes A, F, G, and H respectively, in Figure 4.17.

For the reduced AMG shown in Figure 4.18, the critical path is 1-2-3-4,
and the critical path length is 700. Also, TBO = 300 and TCE = 900. The
waiting tokens are marked in the AMG, as shown in Figure 4.18.

The k-value for each node, significant k-values along with resource
boundaries, the path length from input to corresponding node, and its mod
TBO value are presented in Table 4.5. In Table 4.6, these boundaries are
ordered with respect to mod TBO values (t,), and the allowable range of
vaniation of A; in one TBO frame is calculated. Figure 4.19 shows the
analytical resource envelope. From Figure 4.19 and using Equation 3.1,

R = R, can be determined as follows:

TCE = 900 = R(100-0) + R(300-100)

=300 R

or, R=R,__ =3

135

"L1°¥ 9aNn31 g Ul UMOYS DIV POU [BUONIPUO0D a1} 10] Yydead peonpay ‘SI'y 9an3ig

00T =9 001 =9

og i4 IS

00€ =9 00 =%

136

Node | m T k=m-T-1 | Boundary | Path Length | Mod TBO

1 2 0 1 A, 100 100

2 1 0 0 -

3 1 0 0 -

4 1 1 -1 S, 700 100

5 1 0 0 -

6 1 1 -1 S, 300 0

Table 4.5. The resource envelope table showing k-values and

boundaries for the AMG of Figure 4.18.

137

t,=0 t,=100
Boundaries S,
S,
A,
Latest start of A, = 100 - t,
Mod TBO [t{A)} - - =100 - 100
t{(NODE,}] =

Table 4.6. Finding the possible range of variation
of A; boundaries in one TBO time frame
for the AMG of Figure 4.18.

138

Ay

8T dan31g Jo HIV Y3

10 2d0[9AUD 90IN0SAT dY) JO MITA [BOATRUR YT, ‘61°F danS1]

00€

aPyya

T
1>
I+ v

001

[aPlfo-

&
(1)
(1)

Ay

139
From Figure 4.19, if A, is shifted to the left, it causes the resource

requirement to be equal to R+1. Consequently, the system is driven into
resource limited mode if the node time of node 1 falls below 100. The number
of control edges to prevent resource limited mode are found as:
ForA;(k=1) S,G=0)=1-0-0=1,andS,(§G=0)=1-0-1=0.

Thus, one control edge (for S,) is required to prevent a possible resource
limited mode. The control edge may be inserted from the node contributing to
S, (node 4) to any one successor of node 1 (node 2 or 5). An initial token is
placed on the control edge to account for the packet differential between the
nodes.

The TRE for the AMG of Figure 4.18 without any node time variation
is shown in Figure 4.20 which is obtained using the Design Tool. The TRE
exactly corresponds to the analytical resource envelope shown in Figure 4.19.
The GDSC file used for simulation of the AMG of Figure 4.18 with node time
variation is shown in Figure 4.21, and the corresponding TRE obtained is
shown in Figure 4.22. From Figure 4.22, it is seen that a total four (4)
resources are required if the node time of node 1 is varied, i.e., resource limited
mode is present. To prevent resource limited mode, the AMG may be changed,
as shown in Figure 4.23, by inserting the control edge (found above) from node
4 to node 5. The GDSC file for simulation of the AMG of Figure 4.23 under
node time variation is shown in Figure 4.24, and the corresponding TRE is

shown in Figure 4.25. From Figure 4.25, it is seen that even under node time

ATAMM Design ool FARRPTOUGATAMMNEYAGHAPH conditex.grt

Total Resource Envelope

aph |

T

Al

(300)

TIME 0O

The TRE for the AMG of Figure 4.18 without any

4.20.

Figure

node time varigtion.

140

141

Graph Description File for the AMG of Case Study - III
A Conditional Node Graph with Three Parallel Paths

TBO(GLB) = 300. TBIO(GLB) = 700

To Find the TRE under Node Time Variation

Nodes 6

Sources 1

Sinks 1

Places 8

Priority 43652 1
Resources 3

Input 1

Output 4

Node 1

Inputs 1

Outputs 2 3

Time
Read 10
Process 80 R 10 # Time variation of node 1 #
Write 10

Node 2

Inputs 2

Outputs 4

Time
Read 10
Process 180 R 50 # Time varying combined node 2 #
Write 10

Node 3

Inputs 4

Outputs 5

Time
Read 10
Process 280 R 30 # Time varying combined node 3 #
Write 10

Figure 4.21. The GDSC file for the AMG of Figure 4.18
with time varying node 1, and combined
nodes 2 and 3.

Node 4
Inputs 5 7
Outputs 8
Time
Read 10
Process 80
Write 10

Node 5
Inputs 3
Outputs 6
Time
Read 10
Process 80
Write 10

Node 6
Inputs 6
Outputs 7
Time
Read 10
Process 80
Write 10

Source 1
Outputs 1
Time
Process 290
Write 10

Sink 2
Inputs 8
Time

Read 10

End

Figure 4.21. (Continued)

142

143

The TRE for the AMG of Figure 4.18 under node time variation.

Y

e

@)

\O

IR NGRS h
— .
[N
™~
o ~
Z c
e, - =
s — 2

144

*apouwl PAPIWI| IXINOSAIIX JuUaAdxId 0) g dpou 0)
¥ 9pOU WOIy PoYIosul 93Pa [0IIU0D Y3} YIIM §T°p 2an31q JO HINV 9Y], ‘€z3'p oandig

uayoJ, Sunrem @

ueyo, e[O

IS

001 =¥ 001 =1}

145

The GDSC File for the AMG of Case Study - III

A Conditional Node Graph with Three Parallel Paths
TBO(GLB) = 300. TBIO(GLB) = 700

Control Edge directed from Node 4 to Node 5 is added
to Prevent Resource Limited Mode

To find the TRE with the Control Edge added

Nodes 6

Sources 1

Sinks 1

Places 9 # One Control Edge Added #
Priority 43652 1

Resources 3

Input 1

Output 4

Node 1

Inputs 1

Outputs 2 3

Time
Read 10
Process 80 R 10 # Node Time Variation of Node 1 #
Write 10

Node 2

Inputs 2

Outputs 4

Time
Read 10
Process 180 R 50 # Time Varying Combined Node 2 #
Write 10

Node 3

Inputs 4

Outputs 5

Time
Read 10
Process 280 R 30 # Time Varying Combined Node 3 #
Write 10

Figure 4.24. The GDSC file for the AMG of Figure 4.23 to
prevent resource limited mode.

Node 4
Inputs 5 7
Outputs 8 9
Time
Read 10
Process 80
Write 10

Node 5
Inputs 3 9
Outputs 6
Time
Read 10
Process 80
Write 10

Node 6
Inputs 6
Outputs 7
Time
Read 10
Process 80
Write 10

Source 1
Outputs 1
Time
Process 290
Write 10

Sink 2
Inputs 8
Time

Read 10

End

Figure 4.24. (Continued)

146

: 147

-
=
2

THIRLL

it

e T

R
T
TR

et

8224)

The TRE for the AMG of Figure 4.23 under node time variation,

-
~

| .

o

N

— g N
® i)
= 5
o — =3
— - -

148

variation a total three (3) resources are required, which is equal to the
maximum number of resources in the system. Therefore, resource limited

mode under node time variation is eliminated.

CHAPTER FIVE
CONCLUSION

5.1 Summary

The development and application of the analytical model for resource
utilization, in an ATAMM based real-time data flow architecture, has been the
primary goal of this research. Several useful results are obtained during the
process of model development. First, the analytical resource envelope may be
found directly from the given Algorithm Marked Graph (AMG) and,
consequently, the maximum number of resources are evaluated from a worst
case analysis. Second, the Total Graph Play (TGP) diagram may be
constructed using information from the analytical resource envelope and a
given AMG. Third, the behavior of an AMG, with time varying nodes, is
investigated in view of the change in resource requirements using the
analytical resource envelope of a given AMG. From the study of node time
variation in the AMG, a potential problem of resource limited mode in time
varying node graphs is encountered. A condition for the presence of resource
limited mode is found which, consequently, leads us to a method for preventing
resource limited mode.

An interesting extension to the time varying node case is the modeling

of an AMG with conditional branches. It has been shown that the conditional

150
node graph may be made equivalent to the unconditional AMG by merging

nodes. Therefore, a conditional node graph may be analyzed using the variable
node time model to determine resource requirements. An algorithm [4] which
determines the critical path and the critical path length (TBIO) has been
refined so as to take into account an AMG with initial tokens on forward

edges.

5.2 Evaluation

The analytical resource utilization model is a model which describes a
method for obtaining the analytical resource envelope directly from a given
AMG. The analytical resource envelope so obtained corresponds to the
pictorial view of the total resource envelope (obtained using the ATAMM
software support tools). The analytical resource envelope is obtained using the
notion of a waiting token, where it is noted that a deposit of the waiting token
may be viewed as the release of a resource unit. From the analytical resource

envelope, the value of R__ , maximum number of resources for optimum time

performance, may be derived using a worst case analysis. The analytical
resource envelope shows each and every resource change boundary in the TGP
diagram, and therefore is useful to evaluate changes in resource requirements
under various conditions. In the case studies, which are performed for three

algorithm graphs, the analytical resource envelope is obtained for each graph,

using the analytical resource utilization model. For each graph, the analytical

151

resource envelope directly corresponded to its Total Resource Envelope (TRE),
which is obtained using software simulation of an ATAMM based system.
For a given AMG, a method is described to construct the TGP diagram
from the analytical resource envelope instead of from the Single Graph Play
(SGP) diagram [4]. The new approach is useful since it provides the correct
steady-state view of the TGP diagram for a graph with initial tokens on
forward edges, whereas the SGP approach does not. The TGP diagram so
obtained gives the number of required resources in each region over one TBO
interval, which may also be obtained from the analytical resource envelope.
The basis for development of the variable node time model is provided
by the analytical resource utilization model. The variable node time model is
developed as an ATAMM enhancement, which describes the change in resource
requirements for the execution of an algorithm under node time variation. It

is shown that an increase in the number of required resources beyond R, r

> O
resource limited mode, may occur at any instant in a time varying node graph.
A sufficient condition for the presence of resource limited mode is presented.
Resource limited mode is undesirable because it causes the system
performance to become unpredictable. Consequently, a method of modifying
the graph with control edges so as to prevent resource limited mode is
described. The approach of using the analytical resource envelope is

significant because the change in maximum resource requirement can be easily

viewed, and it also leads us to a method for detecting resource limited mode.

152

The variable node time model is useful in analyzing resource requirements of
a conditional node graph. In the case studies, the potential of resource limited
mode and control edges for its prevention are found for example algorithm
graphs, using the variable node time model. Also, each AMG, with variable
node times, is run in a software simulation and, subsequently, resource limited
mode is observed from the TRE of each AMG. After inserting the control edges
to prevent resource limited mode, each AMG is simulated again. From the
TRE of each AMG, it is observed that resource limited mode has been
prevented. Thus, the experimental results illustrate the applicability of the
analytical results.

An overview of the conditional node model is presented, which describes
a method of reducing the conditional node graphs to equivalent graphs with
time varying nodes, using a notion of partitioned or combined nodes. The idea
is to make use of the variable node time model to predict resource
requirements for the execution of a conditional node graph. In case study III,
a conditional node graph is reduced to an equivalent graph. From the
equivalent graph, the analytical resource envelope and the value of R, are
found using the resource utilization model, which corresponded to the
experimental results. Using the variable node time model, the equivalent
graph is investigated for resource limited mode and its prevention. Also, the
equivalent graph is simulated under node time variation, without and with

control edges, for illustration of the analytical results.

153

The case studies formed a basic demonstration tool for the illustration
of the analytical results. From these results, and without more direct proof,
the resource utilization model is robust, consistent, and is a natural extension

to the existing ATAMM modeling concept.

5.3 Topics for Future Research

Research leads us to several topics of continuing and future research.
First, the ATAMM design tool could be modified to incorporate the idea of the
analytical resource envelope, the TGP diagram, and the variable node time
model. Second, the conditional node model could be investigated for its
implementation in the ATAMM based data flow architectures.

Current version of the design tool utilizes the SGP diagram of a given
graph to evaluate performance measures and resource requirements. The
design tool might be modified to obtain the analytical resource envelope from
a given AMG and, consequently, to evaluate resource requirements by utilizing
the analytical resource envelope. The design tool might also be extended to
predict resource requirements of graphs with time varying nodes. The
detection of the presence of resource limited mode might be included with its
subsequent prevention, by inserting control edge(s) in the given AMG in real
time. The reduction process of a conditional node graph into a variable node

time graph might also be automated.

154
The implementation of a conditional node graph in the ATAMM based

data flow architecture might be a topic of future research. The implementation
method should take care of the null partitions in the reduced graph in such a
way as to prevent the firing of these null partitions to remove the overhead

associated in firing.

(1]

(2]

(3]

(4]

[5]

(6]

[7]

(8]

(9]

LIST OF REFERENCES

J.W. Stoughton and R.R. Mielke, "Petri-Net Model for Concurrent
Processing of Complex Algorithms,” Proceedings of Government
Microcircuit Applications Conference, San Diego, CA, November 1986.

R.R. Mielke, J.W. Stoughton, and S. Som, "Modeling and Performance
Bounds for Concurrent Processing,” Proceedings of the 8th International
Conference on Distributed Computing Systems, San Jose, CA, June
1988.

J.L. Peterson, "Petri_Net Theory and the Modeling of Systems,"
Englewood Cliffs, NJ, Prentice Hall, 1981.

S. Som, "Performance Modeling and Enhancement for the ATAMM Data
Flow Architectures,” Ph.D. Dissertation, Old Dominion University,
Norfolk, Virginia.

R.R. Mielke, J.W. Stoughton, and S. Som, "Modeling and Optimum Time
Performance for Concurrent Processing,” NASA Technical Paper 4167,
Grant NAG1-683, August 1988.

J.W. Stoughton and R.R. Mielke, "Strategies for Concurrent Processing
of Complex Algorithms in Data Driven Architectures,” NASA Technical
Paper 181657, Grant NAG1-683, February 1988.

R.L. Jones, "Diagnostics Software for Concurrent Processing Computer
Systems," M.S. Thesis, Old Dominion University, Norfolk, Virginia, April
1990.

S. Som, J.W. Stoughton, and R.R. Mielke, "Performance Modeling in the
ATAMM Data Flow Architecture,” Technical Paper Presented at the
Ninth IEEE International Phoenix Conference on Computers and
Communications, Scottsdale, Arizona, March 1990.

R.R. Mielke, J.W. Stoughton, S. Som, R. Obando, M. Malekpour, and B.
Mandala, "ATAMM Multicomputer Operating System Functional
Specification,” Progress Report Prepared for NASA for the period
February 1990, Grant NCC1-136, August 1990.

[10]

[11]

[12]

156

J.W. Stoughton, R.R. Mielke, S. Som, R. Obando, M. Malekpour, R.L.
Jones, and B. Mandala, "ATAMM Enhancement and Multiprocessor
Performance Evaluation,” Year End Report for 1990 Prepared for NASA,
Grant NCC1-136, June 1991.

B.C. Kuo, "Digital Control Systems,” Englewood Cliffs, NJ, Prentice
Hall, 1990.

B. Mandala, "A Software Design Tool for Predictable Performance in
Real-time, Data Flow Architectures,” M.S. Thesis, Old Dominion
University, Norfolk, Virginia, December 1990.

